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Keywords: There are very few optimal fourth order methods for solving nonlinear algebraic equations
Iterative methods having roots of multiplicity m. Here we compare 4 such methods, two of which require the
Order of convergence evaluation of the (m — 1)* root. We will show that such computation does not affect the
Multiple roots overall cost of the method.
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1. Introduction

There is a vast literature on the solution of nonlinear equations and nonlinear systems, see for example Ostrowski [1],
Traub [2], Neta [3] and the recent book by Petkovi¢ et al. [4] and references therein. Most of the algorithms are for finding
a simple root of a nonlinear equation f(x) = 0, i.e. for a root « we have f(«) = 0 and f’(c) # 0. In this paper we are interested
in the case that « is a root of multiplicity m > 1. Clearly, one can use the quotient f(x)/f’(x) which has a simple root where
f(x) has a multiple root. Such an idea will not require a knowledge of the multiplicity, but on the other hand will require
higher derivatives. For example, Newton’s method for the function F(x) = f(x)/f’(x) will be
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If we define the efficiency index of a method of order, p as
[=p', @

where d is the number of function- (and derivative-) evaluation per step then this method has an efficiency of 2'/* = 1.2599
instead of v/2 = 1.4142 for Newton’s method for simple roots.

There are very few methods for multiple roots when the multiplicity is known. The first one is due to Schroder [5] and it is
also referred to as modified Newton,

Xni1 = X — My, 3)
where
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The method is based on Newton’s method for the function G(x) = {/f(x) which obviously has a simple root at o, the multiple
root with multiplicity m of f(x).
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Another method based on the same G is Laguerre’s-like method
Ay
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where / ( # 0, m) is a real parameter. When f(x) is a polynomial of degree n, this method with 4 = n is the ordinary Laguerre
method for multiple roots, see Bodewig [6] and Neta and Chun [7]. This family of merthods converges cubically.

We now list optimal fourth order methods for multiple roots. The first paper is by Li et al. [8]. Their method is a special
case of one of the families found later by Li et al. [9].

Li et al. [9] have developed six fourth order methods based on the results of Neta and Johnson [10] and Neta [11]. Here we
list the two optimal fourth order.
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Zhou et al. [14] have also developed fourth-order optimal methods for multiple roots but they will not be included in the
comparison given here. We now give the optimal methods due to Liu and Zhou [12]. These methods require the computation

(m=1) /f'(Yn)
of the ™/Fxx.

Two methods from the family developed by Liu and Zhou [12]
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where
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and H(0) =0, H'(0)=1, H'(0) =m.

m—1
The two members given there are.
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