Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On solutions of the second generalization of d'Alembert's functional equation on a restricted domain

Anna Bahyrycz

Department of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland

ARTICLE INFO

Keywords: Second generalization of d'Alembert's functional equation d'Alembert's functional equation Abelian group Restricted domain Quadratically closed field Lifting ABSTRACT

Let *A* be a subgroup of an abelian group (G, +) and *P* be a quadratically closed field with char $P \neq 2$. We give a full description of all pairs of functions $f : G \to P, g : A \to P$ satisfying the equation

$$f(x+y) + f(x-y) = 2g(x)f(y) \quad (x,y) \in A \times G.$$
(a)

We present an example of solution (f,g) of (a) that cannot be extended to a solution (f,\overline{g}) of the equation

$$f(x+y) + f(x-y) = 2\overline{g}(x)f(y) \quad x, y \in G.$$
(b)

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Many authors have investigated the solutions of Cauchy functional equation on a restricted domain (see for example [6,7,9,11,12,16]. In particular the papers [6, Théorème 1] and [7, Theorems 1 and 2]) have proved the following

Theorem 1.1. Let (H, \cdot) and (F, \cdot) be groups, $\emptyset \neq Y \subset H$ and $Z = H \times Y$. Assume that F is of order greater than 2. Then the following two statements are valid.

(i) A solution $h: H \rightarrow F$ of

$$h(xy) = h(x)h(y) \quad (x,y) \in Z,$$

is a homomorphism if and only if the subgroup generated by Y is H.

(ii) If H is abelian, then $h: H \rightarrow F$ satisfies (1.1) if and only if

$$h(x) = g(x\xi(\pi(x))^{-1})\lambda(\pi(x)) \quad x \in H,$$

for some $\lambda : H/H_0 \to F$ with $\lambda(e) = e$ and some homomorphism $g : H_0 \to F$, where H_0 is the subgroup of H that is generated by Y, e denotes the neutral elements in H/H_0 and F, $\pi : H \to H/H_0$ is the natural projection and $\xi : H/H_0 \to H$ is a lifting (i.e., $\pi(\xi(u)) = u$ for $u \in H/H_0$).

(1.1)

E-mail address: bah@up.krakow.pl

^{0096-3003/\$ -} see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.08.013

In the paper [5] we obtained similar results for the d'Alembert functional equation

$$h(x+y) + h(x-y) = 2h(x)h(y),$$
 (1.2)

in the class of functions mapping an abelian group (G, +) into an abelian ring $(P, +, \cdot)$. In that paper the study was restricted to the situation in which (1.2) is valid for every $(x, y) \in A \times G$ with A being a subgroup of G.

The d'Alembert functional equation and its generalizations have numerous applications among others in the theory of differential equations and geometry (see for example [2–4,8,13,14,17,18]). Sometimes, in specific situations in applications, it is not known if it is satisfied for all arguments, so it is worth to investigate it on restricted domains to find out when a particular restricted domain has an effect on the form of the solutions and how.

Aczél in monograph [1], as a generalization of Eq. (1.2) considered the equation

$$f(x+y) + g(x-y) = 2h(x)k(y) \quad x, y \in G.$$

In this paper we study the special case of the above equation, which we will call our second generalization of d'Alembert's functional equation i.e.,

$$f(x + y) + f(x - y) = 2g(x)f(y) \quad x, y \in G$$
(1.3)

and we show analogous results for pairs of functions $f: G \to P, g: A \to P$ satisfying the equation

$$f(x + y) + f(x - y) = 2g(x)f(y) \quad (x, y) \in A \times G,$$
(1.4)

where (G, +) is an abelian group, *A* is a subgroup of *G* and $(P, +, \cdot)$ is a quadratically closed field with char $P \neq 2$ throughout this paper, unless explicitly stated otherwise.

In the present paper we obtain our results in a different way than in the paper [5].

For a function $m: G \to P$, m_e and m_o denote the even and odd parts of m, respectively, i.e., $m_e = \frac{1}{2}(m + m \circ \tau))$ and $m_o = \frac{1}{2}(m - m \circ \tau)$, where $\tau(x) = -x$ for $x \in G$. Moreover, for $a \in G$ and $D \subset G$ we write $2D := \{2x : x \in D\}$, $a + D := \{a + b : b \in D\}$, $a - D := \{a - b : b \in D\}$ and $G/A := \{[u] = u + A : u \in G\}$.

Let us yet recall a classical result which will be needed in our study (see [15, Theorem 2.2] and [10, Lemma 29.41] from which the last statement inferred).

Theorem 1.2. Let (B, +) be an abelian group and char $P \neq 2$. A pair of functions $f, g: B \to P$ satisfies functional equation

$$f(x + y) + f(x - y) = 2f(x)g(y) \quad x, y \in B$$
(1.5)

if and only if $f(B) = \{0\}$ or there exists an exponential function $m: B \to P \setminus \{0\}$ such that $g = m_e$ and there are two possibilities:

(i) if
$$m = m \circ \tau$$
, i.e. if $m(B) \subseteq \{-1, 1\}$, then f has the form
 $f(x) = m(x)(L(x) + \alpha) \quad x \in B$, (1.6)
here $L: B \to P$ is an additive function and $\alpha \in P$ is a constant,

where $L: B \to P$ is an additive function and $\alpha \in P$ is a constant, (ii) if $m \neq m \circ \tau$, then f has the form

$$f(\mathbf{x}) = \beta m_e(\mathbf{x}) + \gamma m_o(\mathbf{x}) \quad \mathbf{x} \in B,$$
(1.7)

where β , $\gamma \in P$ are constants.

Moreover, m is uniquely determined by g, except that it may be interchanged with $m \circ \tau$.

2. Main result

The following theorem is the main result of this paper and gives the full description of all pairs of functions $f: G \rightarrow P, g: A \rightarrow P$ satisfying (1.4).

Theorem 2.1. The pair of functions $f : G \to P$ and $g : A \to P$ is a solution of Eq. (1.4) if and only if $f(G) = \{0\}$ and g is arbitrary or

(a) There exists an odd mapping $\gamma : G/2A \rightarrow P$ such that

 $f(y) = \gamma(y + 2A), y \in G \text{ and } g = 0.$

or

(b) There exist an exponential function $m : A \to \{-1, 1\}$, a lifting $\xi : G/A \to G$, a family of additive functions $\mathcal{L}_{\sigma} : A \to P$ for $\sigma \in G/A$, and a function $\kappa : G/A \to P$ such that g = m and

$$\xi([0]) = 0, \quad \xi([-y]) = -\xi([y]) \quad y \in G, \ [y] \neq [-y], \tag{2.1}$$

Download English Version:

https://daneshyari.com/en/article/4628542

Download Persian Version:

https://daneshyari.com/article/4628542

Daneshyari.com