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a b s t r a c t

The problem of finding the optimal approximation to the discrete stiffness matrix modeled
by the finite element method is considered in this paper. Desired properties of the updated
matrix, including symmetry, positive semidefiniteness and structure connectivity, are
imposed as side constraints. Besides these, the optimal approximate matrix should be
the least-squares solution to the dynamics equation. To the best of the author’s knowledge,
the optimal matrix approximation problem containing all these constraints simultaneously
has not been proposed in the literature earlier. Alternating direction method is first applied
to this constrained minimization problem. Numerical examples are performed to illustrate
the efficiency of the proposed method.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following optimal matrix approximation problem

min
1
2
kK � Kak2

F

s:t:kKXe �MaXeKek2
F ¼min;

K ¼ KT ; K P 0;
sparse ðKÞ ¼ sparse ðKaÞ;

ð1Þ

where Ma; Ka 2 Rn�n, Ke ¼ diagðkðeÞ1 ; . . . ; kðeÞm Þ 2 Rm�m; Xe ¼ ½xðeÞ1 ; . . . ; xðeÞm � 2 Rn�m and sparse ðKÞ ¼ sparseðKaÞ means that the
zero/nonzero pattern of K is the same with that of Ka.

Problem (1) arises typically in structural dynamics model updating problem [1–5,20]. Let Ma and Ka be the discrete mass
matrix and stiffness matrix of a real-life structure modeled by the finite element method respectively. The diagonal elements
of Ke are natural frequencies obtained by vibration tests and Xe consists of corresponding measured mode shapes. Owing to
the complexity of real-life structures, however, the finite element model depends on the hypothesis of the geometry,
boundary conditions and connectivity conditions of real-life structures and fails to reproduce the dynamic behaviors
accurately. To find the smallest adjustment to the discrete stiffness matrix can be formulated as the objective function of
problem (1). To ensure the physical significance of the updated result, the least-squares solution to the dynamics equation,
the nonnegativeness of energy and the structural connectivity are imposed as side constraints, as shown in problem (1).

Special versions of problem (1) have been studied by many authors [6–20] under the assumption that the discrete mass
matrix and the measured data are exact, most of which consider part of the constraints of problem (1). In addition, in
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consideration of measured error, the problem of processing incomplete, noisy measurements has stimulated some research
efforts [15,19–23].

One of the typical approaches for dealing with this class of problems is the matrix decomposition methods [9,19,20],
including the QR factorization, the singular value decomposition (SVD), the generalized singular value decomposition
(GSVD), and the canonical correlation decomposition (CCD). In view of the sparsity on the updated matrix, we apply the
alternating direction method (ADM) to problem (1) which was proposed by Gabay and Mercier [24] to solve separable con-
vex programming. In recent years, alternating direction method has received extensive attention for its applications, includ-
ing convex programming [25,26], variational inequalities [27], semidefinite programming [28] and image processing [29].
Methods and applications for solving systems of linear and nonlinear matrix equations which are closely related to those
in this paper can be found in [30–32].

Throughout this paper, the following notations will be used. For A;B 2 Rn�m; hA;Bi ¼ trðAT BÞ. Sn
þ is the set of all n� n sym-

metric positive semidefinite matrices. ei is the ith column of the identity matrix I and P is an appropriate permutation matrix
defined by P ¼ ½ei1 ; ei2 ; . . . ; ein �, where ði1; i2; . . . ; inÞ is a permutation of ð1;2; . . . ;nÞ. This paper is organized as follows. In Sec-
tion 2, the original alternating direction method is briefly reviewed. In Section 3, two subproblems of problem (1) are studied
and the alternating direction method for the equivalent form of problem (1) is proposed. In Section 4, two numerical exper-
iments are performed to illustrate the efficiency of the proposed method. Conclusions are drawn in Section 5.

2. Preliminaries

In this section, we review ADM [24] briefly for completeness.
Let G1 : Rs ! ð�1;þ1� and G2 : Rt ! ð�1;þ1� be closed proper convex functions. A is a t � s matrix, and C1 and C2 are

nonempty closed convex subsets of Rs and Rt respectively. Consider the following problem

min G1ðyÞ þ G2ðzÞ
s:t: Ay� z ¼ 0;
y 2 C1; z 2 C2:

ð2Þ

Let k 2 Rt be the Lagrange multiplier vector and r be a positive parameter which penalizes for the violation of the constraint.
The augmented Lagrangian of problem (2) is

Lrðy; z; kÞ ¼ G1ðyÞ þ G2ðzÞ þ hk;Ay� zi þ r
2
kAy� zk2

2: ð3Þ

Given yðkÞ; zðkÞ and kðkÞ, the iteration scheme of ADM may be described as

yðkþ1Þ ¼ argmin
y2C1

G1ðyÞ þ hkðkÞ;Ayi þ r
2
kAy� zðkÞk2

2

n o
; ð4Þ

zðkþ1Þ ¼ argmin
z2C2

G2ðzÞ � hkðkÞ; zi þ
r
2
kAyðkþ1Þ � zk2

2

n o
; ð5Þ

kðkþ1Þ ¼ kðkÞ þ r½Ayðkþ1Þ � zðkþ1Þ�: ð6Þ

Noticing that the objective function of problem (2) is separable, ADM consisted of (4)–(6) is in fact a decomposition algo-
rithm. The efficiency of this method depends on the solutions of two subproblems defined by (4) and (5). If rankðAÞ ¼ s,
the minimums of (4) and (5) are always uniquely attained. Hence, ADM is well defined for problem (2). For matrices, if
we construct a vector consisted of all the column vectors of a matrix in sequence, the Frobenius norm of a matrix is the same
as the 2-norm of a vector, and so is the inner product of vector pair and that of matrix pair. Hence, the vector type alternating
direction method can be extended directly to the matrix type alternating direction method.

3. ADM for problem (1)

Necessary and sufficient conditions satisfying with the least-squares and positive semidefinite constraints in problem (1)
are drawn in [20]. But when the sparsity constraint is appended, it is difficult to give the conditions for guaranteeing the non-
emptiness of the feasible region of problem (1), denoted by D. Throughout this section, we make the assumption that D is
nonempty.

3.1. Algorithm

To fit the form of problem (2), we define

S1 ¼ K 2 Rn�njkKXe �MaXeKek2
F ¼min ; sparse ðKÞ ¼ sparse ðKaÞ

n o
; ð7Þ

S2 ¼ K 2 Rn�njKT ¼ K; K P 0
n o

: ð8Þ

462 Q. Yuan / Applied Mathematics and Computation 223 (2013) 461–471



Download	English	Version:

https://daneshyari.com/en/article/4628564

Download	Persian	Version:

https://daneshyari.com/article/4628564

Daneshyari.com

https://daneshyari.com/en/article/4628564
https://daneshyari.com/article/4628564
https://daneshyari.com/

