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a b s t r a c t

Recently, a serial implementation of the one-bit auto- and cross-correlation functions (ACF and CCF
respectively) in a field programmable gate array (FPGA) has been developed, based on asynchronous
delay elements and counters, known as the counterbased correlation. This paper proposes a method of
parallelizing this otherwise serial process, offering significant improvements in the applicability of this
approach to more types of ACF. Furthermore, the possibility of obtaining lag results from a parallel data
sequence without first shifting the entire sequence has been realized, hence decreasing the number of
clock cycles necessary for the calculation of the ACF. A synchronous design was preferred here for reasons
of stability and portability, the technology of choice again being an FPGA. The advantages offered by the
counterbased implementation in terms of device area usage and speed still apply. A practical implemen-
tation in the instrumentation of an upcoming space mission is also discussed.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

A wide sense, random, stationary signal is fully characterized by
its auto-correlation function (ACF). Hence the ACF in various forms
enjoys extensive use in a wide range of applications. It can be
found in such diverse fields as economics [1], image processing
[2], multiple areas of astronomy [3] and Brownian motion studies
[4], to name but a few.

An ACF calculates the degree of association between the ele-
ments of a single series separated by some lag. Its purpose is to de-
tect non-randomness in data, and to identify an appropriate time
series model if the data is found to be non-random [5]. For a peri-
odic sequence ðXiÞN�1

i¼0 , it generally takes the form of

RX ½i� ¼
XN�1

k¼0

X½k�X½kþ i� ð1Þ

Significant effort has been made to implement correlation func-
tions in hardware, due to the speed-up offered by the possibility of
parallel processing. These functions are currently being deployed in
FPGAs, while traditionally DSP devices have been the technology of
choice [6], as well as custom-made ASIC devices [7]. In [8], a CCF was
implemented in a FPGA, where the function was defined using low-
level schematic capture, probably due to the availability of opti-

mized schematic components. The significant work by Von Herzen
[9] shows the possibility of very fast (up to 250 MHz) CCF calculation
in reconfigurable computing engines. Further to this, there has also
been some investigation into ACFs in particular, and their imple-
mentation in a FPGA. In the work by Bezerra et al. [10] an ACF devel-
oped using VHDL targeting an FPGA was directly compared with the
exact same algorithm as carried out by a pair of microcontrollers of
the 8051 family, as found on-board the NASA 36.152 CUSP sounding
rocket. The significant performance gains from the deployment of
correlation functions in reconfigurable devices over purely software
implementations were proven, leading in part to the work presented
here. In this paper, we investigate the parallelization of a special
type of ACF, the 1-bit version, in hardware.

2. 1-Bit correlation

A two-level (Bernoullian) quantization can be performed on a
series before it is correlated without significant loss of correlation
information, assuming the series investigated is wide sense sta-
tionary and bandlimited. Correlation coefficients before and after
two level quantization are related by what is known as the Van
Vleck correction [11], which states that the result of a measured
correlation q2 is proportional to the two-level quantized correla-
tion q, as given by:

q2 ¼
2
p

sin�1 q ð2Þ
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Assuming this correction factor is applied, it follows that instead of
carrying out a multi-bit correlation, a 1-bit (or binary) equivalent
may be preferred without significant loss of accuracy. Hence, a
1-bit ACF or CCF can be a much more computationally efficient
and realizable statistical tool in hardware systems where there
are heavy restrictions, such as limited power, processing capabili-
ties or transmission bandwidths. The most prominent example area
is radio astronomy [12], where 1-bit cross-correlation functions
have been extensively used due to bandwidth restrictions. Brisken
[13] made a strong case for using dedicated hardware to perform
correlations in this field, instead of software, in that the currently
under development Expanded Very Large Array (EVLA) radio tele-
scope would require a total of 200,000 3 GHz Pentium processors
to carry out the excessively parallel computations needed. This
approach gains more weight in [14], postulating that the best
approach to the processing necessary for the correlator of the
Square Kilometric Array Radio Telescope will probably be dedicated
hardware. For this project, a series of dedicated correlator chips
were always going to be the most important processing elements
[15], focusing on FPGAs [16], whatever the number of quantization
levels used.

Traditionally, 1-bit correlations in digital logic are carried out by
duplicating the original set of bits. The duplicate is then shifted one
bit at a time against the original, until all but the last bit have
‘‘rolled-off’’, i.e. until the highest lag has been computed. The roll-
ing-off is achieved by correlating the shifted-out part of the bit-
stream padded with ’0’. Depending on whether coincidences
strictly of 1’s or of both 1’s and 0’s in the bitstreams are desired,
logic AND or NXOR gates respectively carry out the multiplication.
The product is a bitstream of length equal to that of the original for
each lag/shift (Fig. 1). The result of the ACF for that lag is then ex-
tracted by finding the number of 1’s in this new bitstream. This
process is carried out by a 1’s counter, an asynchronous design of
which forces the sequential propagation of the bitstream through

many levels of logic. Each lag result is available at the end of each
shift cycle through this process. The above described procedure can
formally be viewed as a classical ACF of a Bernoullian sequence.

An example of the above is the ’Bit Correlator’ by Xilinx, which
is a freely distributed, optimized, drop-in module for Xilinx devices
[17]. It performs a bit-by-bit comparison between input data and a
user defined bit match pattern, producing an unsigned output
value of the number of bits that match. Limited to just single bit
correlations, this function will not allow the setting of the match
pattern during runtime, thus preventing the core from becoming
as suitable to our needs as an ACF. In a broader implementation,
a 1-bit version is also discussed in [18], following the principle
described above, carried out in an ASIC as part of an XF-type
spectro-correlator. A 32-lag, 1-bit correlation is performed in the
traditional manner, returning a lag result at the end of clock cycle
of 32 MHz.

3. Counterbased ACF

Recently in the work by Pouchet et al. [19] a novel method of
implementing the 1-bit ACF, dubbed ‘‘Counterbased ACF’’ (CBACF),
was proposed and explored in some detail. A chain of matched de-
lay elements through which the original bitstream is serially prop-
agated is used to produce the shifted coincidences, as a function of
the position of each element in the chain. The chosen delay ele-
ments were latches found in the fabric of a Xilinx FPGA. The
multiply-add-shift operation is replaced by a set of counters, which
asynchronously count the number of coincidences. A running sum
is kept for each degree of shift in the counters, and with each new
bit input all sums are updated in parallel. Fig. 2 displays this meth-
od, along with the use of two delay lines to capture coincidences of
’1’s and coincidences of ’0’s independently, at will. Similarly, a
counterbased implementation of a CCF involves only the shifting
of two separate sequences through the delay elements. The
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Fig. 1. Traditional implementation of a 1-bit ACF, showing ‘‘roll-off’’.
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