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a b s t r a c t

Asymptotic behaviors of stochastic Cohen–Grossberg neural networks with mixed time-
delays are investigated, where the mixed time-delays comprise both the discrete time-
varying delays and the distributed time-delays. The theory of stochastic functional
differential equations is applied to establish two sets of novel criteria on asymptotic stabil-
ity and ultimate boundedness. Finally, two examples are given to illustrate our theoretical
results and to indicate that two sets of criteria do not include each other.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Cohen–Grossberg neural networks was proposed by Cohen and Grossberg in 1983, which includes Hopfield neural net-
works, cellular neural networks and bidirectional associative memory neural networks as its special cases [1]. In both the
biological and artificial neural networks, the interactions between neurons are generally asynchronous, which give rise to
the inevitable signal transmission delays. Also, in electronic implementation of analog neural networks, time-delay is usually
time-varying due to the finite switching speed of amplifiers. Note that continuously distributed delays have gained partic-
ular attention, since a neural network usually has a spatial nature due to the presence of an amount of parallel pathways of a
variety of axon sizes and lengths. Many authors have paid much attention to the research of delayed Cohen–Grossberg neu-
ral networks and made some progress [2–15].

Recently, it has been well recognized that stochastic disturbances are ubiquitous and inevitable in various systems, rang-
ing from electronic implementations to biochemical systems, which are mainly caused by thermal noise, environmental fluc-
tuations as well as different orders of ongoing events in the overall systems [16,17]. Therefore, many authors have paid much
attention to the research of stochastic neural networks and obtained some interesting results. Some sufficient criteria on the
stability of uncertain stochastic neural networks were derived in [18–20]; Almost sure exponential stability of stochastic
neural networks was discussed in [21–25]; In [26–32], mean square exponential stability and pth moment exponential sta-
bility of stochastic neural networks were investigated; Some sufficient criteria on the exponential stability for impulsive sto-
chastic neural networks were established in [33–36]; In [37], the stability of discrete-time stochastic neural networks was
analyzed; Exponential stability of stochastic neural networks with Markovian jump parameters is investigated in [38–40].
These references mainly considered the stability of equilibrium point of stochastic neural networks.

What do we study to understand asymptotic behaviors of stochastic neural networks when the equilibrium point dose
not exist? Boundedness is also one of foundational concepts of dynamical systems. Recently, the results on ultimate bound-
edness of delayed neural networks have been reported. Some sufficient criteria on boundedness were derived in [41,42]; In
[43], the globally robust ultimate boundedness of integro–differential neural networks with uncertainties and varying delays
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were studied; Some sufficient criteria on the ultimate boundedness of neural networks with both varying and unbounded
delays were derived in [44]; In [45,46], a series of criteria on the boundedness, global exponential stability and the existence
of periodic solution for non-autonomous recurrent neural networks were established; Ultimate boundedness of stochastic
Hopfield neural networks were discussed in [47,48]. To the best of our knowledge, for stochastic neural networks with mixed
time-delays, there are few published results on the ultimate boundedness and asymptotic stability. Motivated by the above
discussions, the objective of this paper is to study ultimate boundedness and asymptotic stability of the stochastic Cohen–
Grossberg neural networks with mixed time-delays.

The left paper is organized as follows, some preliminaries are in Section 2, main results are presented in Section 3, numer-
ical examples are given in Section 4 and conclusions are drawn in Section 5.

2. Preliminaries

Consider the following stochastic Cohen–Grossberg neural networks with mixed time-delays

dxðtÞ ¼ dðxðtÞÞ �cðxðtÞÞ þ Af ðxðtÞÞ þ Bf ðxðt � sðtÞÞÞ þ D
Z t

t�sðtÞ
gðxðsÞÞdsþ J

" #
dt þ ½r1xðtÞ þ r2xðt � sðtÞÞ�dwðtÞ; ð2:1Þ

where x ¼ ðx1; . . . ; xnÞT is the state vector, A ¼ ðaijÞn�n;B ¼ ðbijÞn�n and D ¼ ðdijÞn�n represent the connection weight matrix;
dðxðtÞÞ ¼ diagðd1ðx1ðtÞÞ; . . . ; dnðxnðtÞÞÞ presents an amplification function, cðxðtÞÞ ¼ ðc1ðx1ðtÞÞ; . . . ; cnðxnðtÞÞÞT presents an

appropriately behavior function; J ¼ ðJ1; . . . ; JnÞ
T denotes the external bias; r1;r2 2 Rn�n are the diffusion coefficient matri-

ces; f ðxðtÞÞ ¼ ðf1ðx1ðtÞÞ; . . . ; fnðxnðtÞÞÞT and gðxðtÞÞ ¼ ðg1ðx1ðtÞÞ; . . . ; gnðxnðtÞÞÞT denote activation functions; wðtÞ is one dimen-
sional Brownian motion defined on a complete probability space ðX;F ; PÞ with a natural filtration fF tgtP0 generated by
fwðsÞ : 0 6 s 6 tg; there exists a positive constant s such that the transmission delay sðtÞ satisfies 0 6 sðtÞ 6 s.

The initial conditions are given in the form:

xðsÞ ¼ nðsÞ; �s 6 s 6 0; j ¼ 1; . . . ; n;

where nðsÞ ¼ ðn1ðsÞ; . . . ; nnðsÞÞT is Cð½�s;0�; RnÞ-valued function and F 0-measurable Rn-valued random variable satisfying
knk2

s ¼ sup�s6s60EknðsÞk2
<1; k � k is the Euclidean norm and Cð½�s;0�; RnÞ is the space of all continuous Rn-valued functions

defined on ½�s;0�.
Let Fðxt ; tÞ ¼ dðxðtÞÞ �cðxðtÞÞ þ Af ðxðtÞÞ þ Bf ðxðt � sðtÞÞÞ þ D

R t
t�sðtÞ gðxðsÞÞdsþ J

h i
;Gðxt ; tÞ ¼ r1xðtÞ þ r2xðt � sðtÞÞ, where

xt ¼ fxðt þ hÞ : �s 6 h 6 0; t P 0g ¼ uðhÞ: ð2:2Þ

Then system (2.1) can be written by

dxðtÞ ¼ Fðxt ; tÞdt þ Gðxt ; tÞdwðtÞ: ð2:3Þ

Throughout this paper, the following assumptions will be considered.

ðA1Þ There exist constants l�i ; l
þ
i ;m

�
i and mþi such that

l�i 6
fiðxÞ � fiðyÞ

x� y
6 lþi ; m�i 6

giðxÞ � giðyÞ
x� y

6 mþi ; 8x; y 2 R:

ðA2Þ There exist matrices �d ¼ diagf�d1; . . . ; �dng > 0 and d ¼ diagfd1; . . . ; dng > 0 such that 0 < di 6 diðxÞ 6 di, for
x 2 R; i ¼ 1;2; . . . ;n.

ðA3Þ There exist constant m and matrix d ¼ diagfd1; . . . ; dng > 0 such that

_sðtÞ 6 m < 1; xiðtÞciðxiðtÞÞP dix2
i ðtÞ; i ¼ 1; . . . ;n:

Remark 1. It follows from ðA1Þ; ðA2Þ and [49] that system (2.1) has a global solution on t P 0 and Fðxt ; tÞ and Gðxt ; tÞ satisfy
the local Lipschitz condition in [50].

Remark 2. Assumption ðA1Þ is less conservative than that of in [18,19], since the constants l�i ; l
þ
i ;m

�
i and mþi are allowed to

be positive, negative numbers or zeros.

The notation A > 0 (respectively, A P 0) means that matrix A is symmetric positive definite (respectively, positive semi-
definite). AT denotes the transpose of the matrix A. kminðAÞ represents the minimum eigenvalue of matrix A. ⁄means the sym-
metric terms, I denotes identity matrix. Denote L1; L2;M1;M2 by

L1 ¼ diagfl�1 lþ1 ; . . . ; l�n lþn g; L2 ¼ diagfl�1 þ lþ1 ; . . . ; l�n þ lþn g;

M1 ¼ diagfm�1 mþ1 ; . . . ;m�n mþn g; M2 ¼ diagfm�1 þmþ1 ; . . . ;m�n þmþn g:
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