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a b s t r a c t

Green function method is applied to the solution of Schrödinger equation in two-dimen-
sions where there is a constant and nearly uniform magnetic field Bo applied perpendicu-
larly and there are infinitesimally weak scatterers within the system. Electronic density of
states n(E) obtained from the average Green function go is a continuous function of energy E
and not in the form of discrete Landau spikes even in the pure system with no disorder. Self
consistent calculation of self-energy gives two possible scattering time values, one leading
to resistance increase with Bo while the other causing decrease in resistance.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Green function Go related to partial differential operator (PDO) Do, which is derived from Schrödinger partial differential
equation (PDE), is used in obtaining the basic properties of a two-dimensional (2D) system. These properties include density
of states (DOS) n(E) and conductivity r under the effect of a constant perpendicular magnetic field Bo. Difficulties may arise
both from non-self adjointness of Do and from its eigenvalue spectrum’s having a discrete part as well as a continuous one
[1]. Due to these difficulties the first Landau solution [2], by likening the problem to a harmonic oscillator, is invalid for weak
magnetic fields Bo but its results have been carried to date in a wide variety of journal articles [3–5] and books [6–9]. It says
that even the smallest Bo will remove the continuous spectrum and make the spectrum discrete, a statement not supported
by the experiment so far [10–12] and some severe objections have been directed to it [13,14] saying that it needs to be aban-
doned in many situations. But all the attempts simply concentrated on somehow broadening the so called Landau levels and
remained far from convincing. It is therefore necessary to make more radical changes in our way of look at the problem
which can be made, for example, by including the continuous spectrum with a suitable weight as we did in our recent work
on thin film case [15].

For this purpose we have to define a vector potential A giving exactly constant B or nearly constant one. Traditionally
Au ¼ Bor=2 has been chosen [7,16] but this brings a divergent term � r2 into Do which is difficult to make converge by
any choice of basis functions. We have chosen a vector potential A,

Au ¼ ðBor=2Þ expð�xosor=aoÞ; ð1Þ

which gives, on performing the rotational ðr � AÞz ¼ 1
r
@
@r ðrAuÞ ¼ ðBor=2Þð2=r �xosor2=aoÞ expð�xosor=aoÞ a nearly constant

B ¼ Bẑ,

B ¼ Bo expð�xosor=aoÞ � ðxosor=2aoÞBo expð�xosor=aoÞ: ð2Þ
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We can show that this B can be made as close as we wish to a constant Bo. Defining the cyclotron frequency xo ¼ eBo=m,
length scale ao � 103 nm and system’s relaxation time so we can examine the entire problem in the weak field region
xoso � 1. Typically we can take so ¼ 3:3� 10�11 s for pure samples [17], and a field of Bo ¼ 10�3T has
xo ¼ 1:76� 108 s�1 so that the condition xoso ¼ 1:76� 108 � 3:3� 10�11 ¼ 0:0058� 1 is satisfied. If we change r within
the interval 0; ao the exponential term in Eq. (2) falls off very slowly. At a distance r ¼ ao, at about the system boundary,
its value is ’ 1� 0:0058 ¼ 0:9942 and B is nearly constant within the system. In Appendix Eq. (A.22) we have developed

an argument to choose ao ¼ A1=10 so that the system boundary may be extended to infinity together with the system’s area
A. For weaker fields this constancy becomes more perfect. The prefactor in the second term on the right of Eq. (2) has the
value xosor=2ao 6 0:0029 so, we can say that the produced magnetic field is composed of the first term on the right,
B ¼ Bo expð�xosor=aoÞ. The fall off B with r can be made as slow as we wish by choosing Bo to be weak. Experimental work
for nðEÞ is mainly concentrated on determining it via some kind of activation energy measurements [10], magneto-capaci-
tance experiments [11] or magnetization measurements [12]. Experimentalists however feel constrained to use the Landau
levels concept, due to lack of a better theory, although they point out [12] that there is a constant background DOS especially
at weak magnetic fields Bo 6 0:1T, origin of which is not understood. One principal aim of this work is to bring explanation to
the constant background DOS.

Experiments for magnetoresistance RðBÞ show that [17,19–21] there are no MR oscillations for weak Bo, oscillations in the
longitudinal resistivity qxx ¼ q begin at high fields Bo P 0:1T and estimating this range of values constitutes the second goal.
The weak field theory developed here predicts no MR oscillations and agrees qualitatively with the experiment. To explain
these experimental facts used to Landau model has to be changed for weak fields. In a recent work [15] I have solved the
problem of finding Go for the thin film case and now I apply this technique to 2D electron gas (2DEG) under the effect of
a perpendicular magnetic field Bo.

In Section 2 I set out the model, obtain Go ¼ Gc
o þ Gd

o from basis functions u;v of Do and its adjoint D�o respectively. Section 3
is about nðEÞ and RðBÞ calculations, in Section 4 they are compared with experiments and discussed, while Section 5 is for
conclusions. Eigenfunctions and eigenvalues of Do and D�o are described in a separate Appendix.

2. Model

Electron gas is in the infinite x, y plane where there are randomly distributed scatterers Vb ¼
P

ivðr � RiÞwithin the body
and the constant magnetic field Bo points in the z direction. Using cylindrical coordinates and taking the vector potential gi-

ven by Eq. (1), rearranged Schrödinger equation is Howo ¼ ð2mE=�h2ÞebVbwo. Here the Hamiltonian

Ho ¼ f�1
r ð @@r r @

@rÞ � ð @
r@uþ i eBor

2�h expð�xosor=aoÞÞ
2g is defined [9,16], e is the magnitude of the electronic charge, m is its mass,

E is energy and i shows the imaginary number. The strength of scattering is made small by taking eb to be infinitesimal
so that weak scattering results of conductivity theory applies [18]. We try to solve the modified Schrödinger equation

Dowo ¼
@2

@r2 þ
@

r@r
þ 1

r2

@2

@u2 þ
imxoe�

xosor
ao

�h
@

@u
�m2x2

or2e�2xosor
ao

4�h2 þ k2
F þ ie

 !
wo ¼

�2m

�h2 ebVbðr;uÞwo; ð3Þ

in the vanishing volume scattering eb ! 0 limit, with k2
F ¼ 2mE

�h2 where the operator Do is defined as

Do ¼
@2

@r2 þ
@

r@r
þ 1

r2

@2

@u2 þ
imxo

�h
e�xosor=ao

@

@u
�m2x2

or2

4�h2 e�2xosor=ao þ k2
F þ ie: ð4Þ

This operator has the same eigenfunctions as the original Schrödinger operator but its eigenvalues differ in units by �h=2m
times, in fact multiplying them by 2m=�h restores their unit to s�1, as needed in self-energy calculations, which will be done
at the end of the calculations.

Green function related to Eq. (3) satisfies

DoGoðr;u; r0;u0Þ ¼ dðr � r0Þdðu�u0Þ; ð5Þ

and serves in the solution as wo �
R

Goðr;u; r0;u0Þ 2m
�h2 ebVbðr0;u0Þwoðr0;u0Þdr0du0. Although the definition of Go carries no trace

of imperfections, solution wo carries due to the term on the right of Eq. (3). So if we are to express Go, wo and Vb in a set of
basis functions u;v , these functions should carry in them some randomness at least by trace amount, because if we tried to
expand a random function, like wo, in terms of a basis which had no randomness we would be in trouble. We assume that we
can use a biorthogonal basis functions u;v where u are eigenfunctions of the operator Do itself and v are those of the adjoint
operator D�o with the common eigenvalue [25,26]. There are two possible choices for them, called the first choice and the
second choice, and they are all explained in Appendix.

Using the biorthogonal basis given in Appendix, unperturbed Green function Go ¼ Gc
o þ Gd

o can be expanded in the first
choice, as

Goðr;u; r0;u0Þ ¼ ð1�xosoÞ �
X

k

uo
kðr;uÞvo

kðr0;u0Þ
k2

F � k2 þ ie
þxoso �

X
n

uo
nðr;uÞvo

nðr0;u0Þ
k2

F � nxom=�hþ ie
: ð6Þ

Here so is the system’s relaxation time, unknown yet, due to the scattering term W on the right side of Eq. (3)
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