
Customizing floating-point units for FPGAs: Area-performance-standard trade-offs

Pedro Echeverría ⇑, Marisa López-Vallejo
Departamento de Ingeniería Electrónica, Universidad Politécnica de Madrid, Spain

a r t i c l e i n f o

Article history:
Available online 7 May 2011

Keywords:
Floating-point arithmetic
FPGAs
Library of operators
High performance

a b s t r a c t

The high integration density of current nanometer technologies allows the implementation of complex
floating-point applications in a single FPGA. In this work the intrinsic complexity of floating-point oper-
ators is addressed targeting configurable devices and making design decisions providing the most suit-
able performance-standard compliance trade-offs. A set of floating-point libraries composed of adder/
subtracter, multiplier, divisor, square root, exponential, logarithm and power function are presented.
Each library has been designed taking into account special characteristics of current FPGAs, and with this
purpose we have adapted the IEEE floating-point standard (software-oriented) to a custom FPGA-ori-
ented format. Extended experimental results validate the design decisions made and prove the usefulness
of reducing the format complexity.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Current deep sub-micron technologies allow manufacturing of
FPGAs with extraordinary logic density and speed. The initial chal-
lenges related to FPGAs programmability and large interconnection
capacitances (poor performance, low logic density and high power
dissipation) have been overcome while providing attractive low
cost and flexibility [1].

Subsequently, use of FPGAs in the implementation of complex
applications is increasingly common but relatively new when deal-
ing with floating-point applications ranging from scientific com-
puting to financial or physics simulations [2–4]. This is a field of
increasing research activity due to the performance and efficiency
that FPGAs can achieve. The peak FPGA floating-point performance
is growing significantly faster than the CPU counterpart [5] while
their energy efficiency outperforms CPUs or GPUs [6]. Additionally,
FPGA flexibility and inherent fine-grain parallelism make them
ideal candidates for hardware acceleration improving GPUs capa-
bilities for a particular set of problems with complex datapaths
or control and data inter-dependencies [7]. FPGAs flexibility also
allows the use of tailored precision, what can significantly improve
certain applications. Furthermore, new FPGA architectures have
embedded resources which can simplify the implementation of
floating-point operators.

However, the large and deeply pipelined floating-point units
require careful design to take advantage of the specific FPGA
features. Designing this kind of application from scratch is almost

impossible or makes the design cycle extremely long. Thus, the
availability of complete and fully characterized floating-point
libraries targeting FPGAs has become a must.

The IEEE standard for binary floating-point arithmetic was con-
ceived to be implemented through custom VLSI units developed for
microprocessors. However, if the target hardware is an FPGA, the
internal architecture of these operators must be highly optimized
to take advantage of the FPGA architecture [8]. Furthermore,
implementations with slight deviations from the standard could
be of great interest, since many applications can afore some accu-
racy reduction [3,9], given the important savings that can be
achieved: reduced hardware resources and increased performance.

Several approaches have addressed the hardware implementa-
tion of a set of floating-point operators [10–12], but none of them
includes the wide and general analysis carried out here. Some
works only include the basic operators (adder/subtracter, multi-
plier, divider and square root) [10]. Other works focus on the
implementation of particular floating-point operator implementa-
tions [11–13]. Regarding advanced operators (exponential, loga-
rithm and power functions) few works can be found, standing
out [14–16], with implementations of the exponential and loga-
rithm functions.

In [8], the potential of FPGAs for floating-point implementations
is exploited focusing on the use of internal fixed formats and error
analysis what requires specific analysis for every application and
supporting tools. Therefore, floating-point operators are mainly rep-
licated in hardware without tailoring the format to the applications.
In this scenario is where we have focused on, improving the perfor-
mance of the floating-point units taking advantage of FPGA flexibil-
ity. We have tuned the architecture of floating-point operators to get
the best performance-cost trade-off with slight deviations from the

0141-9331/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2011.04.004

⇑ Corresponding author.
E-mail addresses: petxebe@die.upm.es (P. Echeverría), marisa@die.upm.es

(M. López-Vallejo).

Microprocessors and Microsystems 35 (2011) 535–546

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2011.04.004
mailto:petxebe@die.upm.es
mailto:marisa@die.upm.es
http://dx.doi.org/10.1016/j.micpro.2011.04.004
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


standard. This approach was also discussed in [17] but it is extended
here in several ways:

� We have included advanced operators.
� A more complete set of deviations is studied.
� We perform an in-depth analysis of the implications of the

deviations.
� We study the replicability of the operators.
� We provide a set of recommendations to achieve the resolution

and accuracy of the standard with high performance.

Our proposed libraries include both conventional and advanced
operators. Starting by an almost fully-compliant library1 (Std), we
have made several design decisions that allow clear improvements
in terms of area and performance. These design decisions include
the substitution of denormalized numbers by zero, the use of trunca-
tion rounding or the definition of specific hardware flags that allow
the use of extended bit width internally.

The interest of this work is focused on the impact of those deci-
sions over floating-point operators and not in presenting new
architectures. Thus, the main contributions of this work are the
following:

� A thorough analysis on the implications of the proposed design
decisions has been carried out focusing on the performance-
accuracy trade-offs. This is the base of a set of recommendations
that can be considered when a complex floating-point applica-
tion is implemented in configurable hardware.
� A complete set of varying accuracy floating-point libraries has

been developed including both conventional (adder/subtracter,
multiplier, divider and square root) and advanced (exponential,
logarithm and power functions) operators.
� A systematic approach based on specific interfaces has been

adopted allowing the use of extended bit widths. It simplifies
the implementation of complex applications and reduces the
resources needed for chained operators fitting in a single FPGA
with better performance.
� Two final FPGA oriented libraries with significant hardware

improvements have been implemented, taking advantage of
the proposed design decisions.

The paper structure is as follows: Section 2 summarizes the
floating-point format. Section 3 presents the key design decisions
that are proposed while Section 4 describes the particular architec-
ture of each operator. Experimental results are thoroughly dis-
cussed in Section 5, paying special attention to the influence of
the proposed design decisions. Finally, Section 6 introduces a hard-
ware library specially designed for FPGAs and Section 7 draws
some conclusions.

2. Floating-point format IEEE 754

The IEEE Standard [18] is mainly designed for software architec-
tures, usually using 32 bit words (single precision) or 64 bit words
(double precision). Each word (Fig. 1) is composed of a sign (s, 1
bit), a mantissa (mnt, mb bits) and an exponent (exp, eb bits), being
the value of a number:

s�mnt0 � 2exp0 ¼ s� h �mnt � 2exp�bias ð1Þ

where h is an implicit bit known as the hidden bit and the bias is a
constant that depends on eb being its value 2eb�1 � 1. With this
number representation the floating-point format can represent

zeros, infinities, exceptions (Not a Number, NaN) and two number
types, normal ones (normalized) and numbers very close to zero
(denormalized). The differentiation among these five types is based
on the exponent and mantissa values. Table 1 depicts all possible
combinations of exponent and mantissa values.

The standard is specifically designed to handle these five num-
ber types sharing a common format while maximizing the total set
of numbers that are represented. Combining these two facts in-
creases the complexity of the arithmetic units because, in addition
to the calculation unit itself, it is needed a preprocessing (also
known as prenormalization) of the inputs numbers and a postpro-
cessing (also known as postnormalization) of the output numbers,
see Fig. 2.

Therefore, when implementing a floating-point operator, the
hardware required is not only devoted to the calculation unit itself,
additional logic is needed just to handle the complexity of the for-
mat. This logic represents a significant fraction of the area of a
floating-point unit, a 48% of logic in average for the studied opera-
tors, as will be shown in Section 5. In a general way preprocessing
logic includes:

� Analysis of the number type of the inputs, which includes expo-
nent and mantissa analysis.
� Determination of operation exceptions due to the number type

or sign of the inputs (square root, logarithm).
� Normalization of inputs.
� Conversion of inputs to the format required by the calculation

unit.

Fig. 1. Floating-point word.

Table 1
Types of floating-point numbers.

Type Exponent Mantissa h value

Zero 0 0 – ±0
Denormalized 0 –0 0 Eq. (1)
Normalized 1 to 2eb � 2 – 1 Eq. (1)
Infinities 2eb�1 0 – ±1
NaN 2eb�1 –0 – –

Prenormalization

Calculation

Postnormalization

Input numbers (x,y)

Result (z)

Fig. 2. Floating-point operator.

1 Only some software issues as exception handing with additional flags and
signaling NaNs (not a number) are not implemented.

536 P. Echeverría, M. López-Vallejo / Microprocessors and Microsystems 35 (2011) 535–546



Download English Version:

https://daneshyari.com/en/article/462866

Download Persian Version:

https://daneshyari.com/article/462866

Daneshyari.com

https://daneshyari.com/en/article/462866
https://daneshyari.com/article/462866
https://daneshyari.com

