
Richardson extrapolation-based sensitivity analysis
in the multi-objective optimization of analog circuits

I. Guerra-Gómez a,c, E. Tlelo-Cuautle a,⇑, Luis G. de la Fraga b

a INAOE, Department of Electronics, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840, Mexico
b CINVESTAV, Computer Sciences Department, Av. IPN 2508, Mexico City 07360, México
c SEMTECH/Snowbush Mexico Design Center, Mexico

a r t i c l e i n f o

Keywords:
Sensitivity analysis
Circuit optimization
Evolutionary algorithms
Richardson extrapolation
Analog integrated circuits

a b s t r a c t

The feasible solutions provided by a multi-objective evolutionary algorithm (MOEA) in the
optimal sizing of analog integrated circuits (ICs) can be very sensitive to process variations.
Therefore, to select the optimal sizes of metal–oxide–semiconductor field-effect-transis-
tors (MOSFETs) but with low sensitivities, we propose to perform multi-parameter sensi-
tivity analysis. However, since MOEAs generate feasible solutions without an explicit
equation, then we show the application of Richardson extrapolation to approximate the
partial derivatives associated to the sensitivities of the performances of an amplifier with
respect to the sizes of every MOSFET. The proposed multi-parameter sensitivity analysis is
verified through the optimization of a recycled folded cascode (RFC) operational transcon-
ductance amplifier (OTA). We show the behavior of the multi-parameter sensitivity
approach versus generations. The final results show that the optimal sizes, selected after
executing the sensitivity approach, guarantee the lowest sensitivities values while improv-
ing the performances of the RFC OTA.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

To have a general idea on analog integrated circuit (IC) sizing strategies developed by researchers and companies during
the last 20 years, an overview on the classification and a brief description of the majority of them can be found in [1].
Although these works and other recently published strategies [2–4] provide good sizing solutions, still the analog design
community deals with the hard open problem related to process variations [5,6]. In this manner, we propose to perform mul-
ti-parameter sensitivity analysis to the feasible solutions provided by a multi-objective evolutionary algorithm (MOEA), with
the goal to select the optimal sizes of an analog IC but with low sensitivities. Because very often, the best feasible solutions
meeting extreme performance requirements are located at some peripherals of the feasible solution space, but some vari-
ability in the design parameters can transform a best solution to a worst one [7,6,8,5].

Since our proposed multi-parameter sensitivity analysis is performed from numerical data instead of using explicit equa-
tions, we propose to apply numerical finite differences and Richardson extrapolation [9–12], to approximate the partial
derivatives associated to the sensitivities of the sizing relationships W/L (width/large) of the MOSFETs. These processes
are performed in two domains: variables W/L (design parameters) and objectives, where both are evaluated by linking
HSPICE�.

The first step of our proposed approach consists on conventional optimization by applying the MOEA called non-domi-
nated sorting genetic algorithm (NSGA-II) [13]. The second step is devoted to perform multi-parameter sensitivity analysis
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for all feasible solutions in the Pareto front. The goal is to discriminate those feasible solutions located in a delicate point that
does not support the natural variations of the fabrication processes, i.e. those having large sensitivities.

2. Multi-objective optimization

The optimization stage is performed by applying the MOEA NSGA-II, to minimize a problem of the form [14]:

minimize fðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fmðxÞ�T

subject to hkðxÞP 0; k ¼ 1 . . . p;
ð1Þ

where function f : Rn ! Rm, x ¼ ½x1; . . . ; xn�T is the decision vector and n is the number of variables; x 2 X, where X � Rn is the
decision space for the variables. Every objective function fjðxÞ : Rn ! R; j ¼ 1 . . . m ðm P 2Þ and hkðxÞ; k ¼ 1 . . . p are perfor-
mance constraints.

Very often, since the objectives in (1) contradict each other, no point x 2 X minimizes all the objectives simultaneously.
The best tradeoffs among the objectives can be defined in terms of Pareto optimality [15–17].

The NSGA-II Algorithm is based on Pareto ranking. First, two populations (Po and Q o) are generated, each one of size N. The
NSGA-II procedure in each generation consists of rebuilding the current (t) population (Rt) from the two original populations
(Pt and Qt). Next, through a nondominated sorting procedure all solutions in Rt are ranked and classified in a family of sub-
fronts [13]. In the next step, a new offspring (Ptþ1) is created from the current population Rt (previously ranked and ordered
by sub-front number), with the goal to choose from a population of size 2N;N solutions belonging to the first sub-fronts.
Besides, the last sub-front could be greater than necessary, and then a measure (idistance) is used to preserve diversity by
selecting the solutions that are far from the rest [18]. To build new generations we use differential evolution (DE) [19], as
genetic operator.

Regarding to circuit sizing, each variable x represents the width (W) or length (L) of the MOSFETs. Usually, those values
are integer-multiples of the minimum value allowed by the fabrication processes. In this manner, if the W/L relationship is
expressed in multiples of the minimum L, then the DE operator is performed by rounding W/L to the closer multiple of the
minimum L.

3. Multi-parameter sensitivity analysis

The relative or normalized sensitivity (S) can be defined as the cause and effect relationship between the circuit elements
variations, and the resulting changes in the performances response [20,21]. Furthermore, in the design of analog ICs the low-
est sensitivity is very desired.

Let fiðxÞ be an objective function (performance response), where x ¼ ½x1; . . . ; xn�T are the design variables. It is possible to
relate small changes in the response of the performance (@fi, i 2 ½1;m�) to variations in the design variables (@xj; j 2 ½1;n�). It
leads us to the single parameter sensitivity definition given by,

Sfi
xj
’ xj

fi

@fi

@xj
: ð2Þ

According to (2), there is one sensitivity for each objective function in f (see (1)) and for each variable in x. Then, it is
possible to define the multi-parameter sensitivity which sums the different single sensitivities regarding the different vari-
ables for each objective as follows [21]:

Sfj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

S
fj
xi

��� ���2 � r2
xi

vuut ; ð3Þ

where S
fj
xi

is calculated by (2), rxi
is a variability parameter of xi and the square root is used to preserve the same units.

The performances of an analog IC are evaluated using HSPICE�, and they are considered as the objective functions. As one
can infer, using a numerical circuit simulator, there is not possibility to derive an explicit equation for each performance or
objective function. Therefore, in order to calculate the partial derivative required by (2), the Richardson extrapolation de-
scribed by (4), is used herein:

@fi

@xj
� giðx; j;dÞ � giðx; j;�dÞ

2d
; with d! 0; ð4Þ

where function gi is defined as:

gi : Rn ! R;

giðx; j; dÞ ¼ fiðyÞ jyk ¼ xk for k – j and yj ¼ xj þ d:
ð5Þ

In (4), d is a step parameter that is updated in each iteration [22], for this case d ¼ 2�udu�1; d0 is assigned to an initial value
and u is the current iteration. The recursive calculation continues until a tolerance error, as stopping criterion (d), is reached.
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