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We study various functions, principal ideals and annihilators depending on the projections
aay and aya for a Moore–Penrose invertible ring element, extending recent work of O.M.
Baksalary and G. Trenkler for matrices.
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1. Introduction

Throughout this paper, the symbol R will denote a unital ring (1 will be its unit) with an involution. Let us recall that an
involution in a ring R is a map a # a� in R such that ðaþ bÞ� ¼ a� þ b�; ðabÞ� ¼ b�a� and ða�Þ� ¼ a, for any a; b 2 R.

We say that a 2 R is regular if there exists b 2 R such that aba ¼ a. It can be proved that for any a 2 R, there is at most one
ay 2 R (called the Moore–Penrose inverse of a) such that

aaya ¼ a; ayaay ¼ ay; ðaayÞ� ¼ aay; ðayaÞ� ¼ aya:

In [9] it was proved that any complex matrix has a unique Moore–Penrose inverse, however, let us notice that the proof
given therein is valid to guarantee the uniqueness – if the Moore–Penrose inverse exists – in a ring with involution. If there
exists such ay we will say that a is Moore–Penrose invertible. The subset of R composed of all Moore–Penrose invertible ele-
ments will be denote by Ry. We write R�1 for the set of all invertible elements in R. The word projection will be reserved for
an element q ofR which is self-adjoint and idempotent, that is q� ¼ q ¼ q2. A ringR is called �-reducing if every element a of
R obeys the implication a�a ¼ 0) a ¼ 0.

Let x 2 R and let p 2 R be an idempotent (p ¼ p2). Then we can write

x ¼ pxpþ pxð1� pÞ þ ð1� pÞxpþ ð1� pÞxð1� pÞ

and use the notations

x11 ¼ pxp; x12 ¼ pxð1� pÞ; x21 ¼ ð1� pÞxp; x22 ¼ ð1� pÞxð1� pÞ:

Every projection p 2 R induces a matrix representation which preserves the involution in R, namely x 2 R can be repre-
sented by means of the following matrix:

x ¼
pxp pxð1� pÞ

ð1� pÞxp ð1� pÞxð1� pÞ

� �
¼

x11 x12

x21 x22

� �
: ð1:1Þ
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The purpose of this paper is to study several ideals involving the projections aay and aya, when a 2 Ry. We shall consider
two kinds of ideals. The principal ideals (also called image ideals) generated by b 2 R are defined by bR ¼ fbx : x 2 Rg and
Rb ¼ fxb : x 2 Rg. The annihilators (also called kernel ideals) of b 2 R are defined by b� ¼ fx 2 R : bx ¼ 0g and
�b ¼ fx 2 R : xb ¼ 0g. If R is a ring with the unit and p 2 R, then it is quickly seen that pRp ¼ fpxp : x 2 Rg is a sub-ring
whose unity is p. From now on, for an arbitrary projection p, we shall denote p ¼ 1� p.

The following elementary lemma will be many times used in the sequel.

Lemma 1.1. Let R be a ring with involution and a 2 R. Then

(i) a 2 Ry () a� 2 Ry. Furthermore, ða�Þy ¼ ðayÞ�.
(ii) If a 2 Ry, then ay 2 Ry and ðayÞy ¼ a.
(iii) If a 2 Ry, then a�a; aa� 2 Ry and

ða�aÞy ¼ ayða�Þy; ðaa�Þy ¼ ða�Þyay; ay ¼ ða�aÞya� ¼ a�ðaa�Þy; a� ¼ ayaa� ¼ a�aay:

(iv) If R is �-reducing, then a�a 2 Ry ) a 2 Ry and aa� 2 Ry ) a 2 Ry.

Proof. It is evident that (i)–(iii) hold. We will prove only the first implication of (iv) since to prove the other one, it is suf-
ficient to make the same argument for a� instead of a. Assume that a�a 2 Ry and let x ¼ ða�aÞya�. Observe that the Moore–
Penrose inverse of a selfadjoint Moore–Penrose invertible element is again self-adjoint, and thus, ða�aÞy is self-adjoint.

Now ðaxÞ� ¼ aða�aÞya�
h i�

¼ aða�aÞya� ¼ ax; xa ¼ ða�aÞya�a is selfadjoint; xax ¼ ða�aÞya�aða�aÞya� ¼ ða�aÞya� ¼ x. Finally,

a�axa ¼ a�aða�aÞya�a ¼ a�a, and since R is �-reducing, we get axa ¼ a. h

A consequence of Lemma 1.1 is that

if x 2 Ry is self-adjoint; then xxy ¼ xyx: ð1:2Þ

For the class of Moore–Penrose invertible elements x 2 R such that xxy ¼ xyx, the reader is referred to [3].

2. Group inverses

Let R be a ring (possibly without an involution). If a 2 R, then there is at most one x 2 R such that

axa ¼ a; xax ¼ x; ax ¼ xa:

When such x exists, we will write x ¼ a# and we will say that x is the group inverse of a and a is group invertible. The sym-
bol R# will denote the set of all group invertible elements of R.

In this paragraph, let F be a square complex matrix. In [1, p. 10215] it was given a list of several equivalent conditions
(involving the orthogonal projectors FFy and FyF) for F to has the group inverse. The proof given therein relies in rank matrix
theory and a matrix decomposition given by Hartwig and Spindelböck [4]. However, as we shall see, many of these equiva-
lences can be stated in a ring setting, and proved by algebraic reasonings.

We shall use the following result [10, Prop. 8.22], whose proof is included for the convenience of the reader and which
implies that in a commutative ring, group invertibility is the same as the existence of a generalized inverse.

Theorem 2.1. Let R be a unital ring and a 2 R. Then a is group invertible if and only if there exist x; y 2 R such that a2x ¼ a and
ya2 ¼ a.

Proof. If a 2 R# we have a2a# ¼ a ¼ a#a2.
Reciprocally, assume that there exist x; y 2 R such that a2x ¼ a and ya2 ¼ a. We will prove yax ¼ a#. First, let us see that

ax ¼ ya2x ¼ ya. Now, aðyaxÞ ¼ aðyaÞx ¼ a2x2 ¼ ax and ðyaxÞa ¼ yðaxÞa ¼ y2a2 ¼ ya implies that aðyaxÞ ¼ ðyaxÞa. Finally
aðyaxÞa ¼ ya2 ¼ a and ðyaxÞaðyaxÞ ¼ yayax ¼ yax. h

Obviously, Theorem 2.1 implies that in a commutative ring, group invertibility is the same as regularity.
Observe that under the hypothesis of Theorem 2.1, one has

a2x ¼ a and ya2 ¼ a ) a# ¼ yax: ð2:1Þ

Let us notice that by Theorem 2.1 one can deduce that for a 2 R,

a 2 R# () aR ¼ a2R and Ra ¼ Ra2:

This latter equivalence can be viewed as a ring version of ‘‘for a matrix F 2 Cn;n, there exists F# if and only if
rankðF2Þ ¼ rankðFÞ’’ (see [5, Section 4.4]).

It was mentioned in [1, p. 10215] that for a given square complex matrix F, there exists F# if and only if
RðFÞ \ N ðFÞ ¼ f0g, where Rð�Þ and Nð�Þ denotes, respectively, the column space and the null space of a matrix. Let us notice
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