Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On the elements aa^{\dagger} and $a^{\dagger}a$ in a ring

Julio Benítez^{a,*}, Dragana Cvetković-Ilić^{b,1}

^a Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain ^b Faculty of Sciences and Mathematics, Department of Mathematics, University of Nis, 18000 Nis, Serbia

ARTICLE INFO

Keywords: Ring with involution Projections Moore–Penrose inverses Principal ideals Annihilators

ABSTRACT

We study various functions, principal ideals and annihilators depending on the projections aa^{\dagger} and $a^{\dagger}a$ for a Moore–Penrose invertible ring element, extending recent work of O.M. Baksalary and G. Trenkler for matrices.

© 2013 Elsevier Inc. All rights reserved.

CrossMark

1. Introduction

Throughout this paper, the symbol \mathcal{R} will denote a unital ring (1 will be its unit) with an involution. Let us recall that an *involution* in a ring \mathcal{R} is a map $a \mapsto a^*$ in \mathcal{R} such that $(a + b)^* = a^* + b^*, (ab)^* = b^*a^*$ and $(a^*)^* = a$, for any $a, b \in \mathcal{R}$.

We say that $a \in \mathcal{R}$ is *regular* if there exists $b \in \mathcal{R}$ such that aba = a. It can be proved that for any $a \in \mathcal{R}$, there is at most one $a^{\dagger} \in \mathcal{R}$ (called the *Moore–Penrose inverse* of a) such that

$$aa^{\dagger}a = a, \quad a^{\dagger}aa^{\dagger} = a^{\dagger}, \quad (aa^{\dagger})^* = aa^{\dagger}, \quad (a^{\dagger}a)^* = a^{\dagger}a.$$

In [9] it was proved that any complex matrix has a unique Moore–Penrose inverse, however, let us notice that the proof given therein is valid to guarantee the uniqueness – if the Moore–Penrose inverse exists – in a ring with involution. If there exists such a^{\dagger} we will say that a is *Moore–Penrose invertible*. The subset of \mathcal{R} composed of all Moore–Penrose invertible elements will be denote by \mathcal{R}^{\dagger} . We write \mathcal{R}^{-1} for the set of all invertible elements in \mathcal{R} . The word *projection* will be reserved for an element q of \mathcal{R} which is self-adjoint and idempotent, that is $q^* = q = q^2$. A ring \mathcal{R} is called *-*reducing* if every element a of \mathcal{R} obeys the implication $a^*a = 0 \Rightarrow a = 0$.

Let $x \in \mathcal{R}$ and let $p \in \mathcal{R}$ be an idempotent $(p = p^2)$. Then we can write

$$x = pxp + px(1-p) + (1-p)xp + (1-p)x(1-p)$$

and use the notations

 $x_{11} = pxp, \quad x_{12} = px(1-p), \quad x_{21} = (1-p)xp, \quad x_{22} = (1-p)x(1-p).$

Every projection $p \in \mathcal{R}$ induces a matrix representation which preserves the involution in \mathcal{R} , namely $x \in \mathcal{R}$ can be represented by means of the following matrix:

<i>x</i> =	[рхр	px(1-p) $(1-p)x(1-p)$	$ = \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} $	x_{11}	<i>x</i> ₁₂	(1	1.1)
	$\lfloor (1-p)xp$	(1-p)x(1-p)		x_{22}].)	

* Corresponding author.

0096-3003/\$ - see front matter \odot 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.07.015

E-mail addresses: jbenitez@mat.upv.es (J. Benítez), dragana@pmf.ni.ac.rs (D. Cvetković-Ilić).

¹ Supported by Grant No. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia.

(1.2)

The purpose of this paper is to study several ideals involving the projections aa^{\dagger} and $a^{\dagger}a$, when $a \in \mathcal{R}^{\dagger}$. We shall consider two kinds of ideals. The *principal ideals* (also called image ideals) generated by $b \in \mathcal{R}$ are defined by $b\mathcal{R} = \{bx : x \in \mathcal{R}\}$ and $\mathcal{R}b = \{xb : x \in \mathcal{R}\}$. The *annihilators* (also called kernel ideals) of $b \in \mathcal{R}$ are defined by $b^{\circ} = \{x \in \mathcal{R} : bx = 0\}$ and $^{\circ}b = \{x \in \mathcal{R} : xb = 0\}$. If \mathcal{R} is a ring with the unit and $p \in \mathcal{R}$, then it is quickly seen that $p\mathcal{R}p = \{pxp : x \in \mathcal{R}\}$ is a sub-ring whose unity is p. From now on, for an arbitrary projection p, we shall denote $\overline{p} = 1 - p$.

The following elementary lemma will be many times used in the sequel.

Lemma 1.1. Let \mathcal{R} be a ring with involution and $a \in \mathcal{R}$. Then

(i) a ∈ R[†] ⇔ a* ∈ R[†]. Furthermore, (a*)[†] = (a[†])*.
(ii) If a ∈ R[†], then a[†] ∈ R[†] and (a[†])[†] = a.
(iii) If a ∈ R[†], then a*a, aa* ∈ R[†] and
(a*a)[†] = a[†](a*)[†], (aa*)[†] = (a*)[†]a[†], a[†] = (a*a)[†]a* = a*(aa*)[†], a* = a[†]aa* = a*aa[†].
(iv) If R is *-reducing, then a*a ∈ R[†] ⇒ a ∈ R[†] and aa* ∈ R[†] ⇒ a ∈ R[†].

Proof. It is evident that (i)–(iii) hold. We will prove only the first implication of (iv) since to prove the other one, it is sufficient to make the same argument for a^* instead of a. Assume that $a^*a \in \mathcal{R}^{\dagger}$ and let $x = (a^*a)^{\dagger}a^*$. Observe that the Moore–Penrose inverse of a selfadjoint Moore–Penrose invertible element is again self-adjoint, and thus, $(a^*a)^{\dagger}$ is self-adjoint. Now $(ax)^* = [a(a^*a)^{\dagger}a^*]^* = a(a^*a)^{\dagger}a^* = ax; xa = (a^*a)^{\dagger}a^*a$ is selfadjoint; $xax = (a^*a)^{\dagger}a^*a(a^*a)^{\dagger}a^* = (a^*a)^{\dagger}a^* = x$. Finally, $a^*axa = a^*a(a^*a)^{\dagger}a^*a = a^*a$, and since \mathcal{R} is *-reducing, we get axa = a.

A consequence of Lemma 1.1 is that

if
$$x \in \mathcal{R}^{\dagger}$$
 is self-adjoint, then $xx^{\dagger} = x^{\dagger}x$.

For the class of Moore–Penrose invertible elements $x \in \mathcal{R}$ such that $xx^{\dagger} = x^{\dagger}x$, the reader is referred to [3].

2. Group inverses

Let \mathcal{R} be a ring (possibly without an involution). If $a \in \mathcal{R}$, then there is at most one $x \in \mathcal{R}$ such that

axa = a, xax = x, ax = xa.

When such *x* exists, we will write $x = a^{\#}$ and we will say that *x* is the *group inverse* of *a* and *a* is *group invertible*. The symbol $\mathcal{R}^{\#}$ will denote the set of all group invertible elements of \mathcal{R} .

In this paragraph, let *F* be a square complex matrix. In [1, p. 10215] it was given a list of several equivalent conditions (involving the orthogonal projectors FF^{\dagger} and $F^{\dagger}F$) for *F* to has the group inverse. The proof given therein relies in rank matrix theory and a matrix decomposition given by Hartwig and Spindelböck [4]. However, as we shall see, many of these equivalences can be stated in a ring setting, and proved by algebraic reasonings.

We shall use the following result [10, Prop. 8.22], whose proof is included for the convenience of the reader and which implies that in a commutative ring, group invertibility is the same as the existence of a generalized inverse.

Theorem 2.1. Let \mathcal{R} be a unital ring and $a \in \mathcal{R}$. Then a is group invertible if and only if there exist $x, y \in \mathcal{R}$ such that $a^2x = a$ and $ya^2 = a$.

Proof. If $a \in \mathbb{R}^{\#}$ we have $a^2a^{\#} = a = a^{\#}a^2$.

Reciprocally, assume that there exist $x, y \in \mathcal{R}$ such that $a^2x = a$ and $ya^2 = a$. We will prove $yax = a^{\#}$. First, let us see that $ax = ya^2x = ya$. Now, $a(yax) = a(ya)x = a^2x^2 = ax$ and $(yax)a = y(ax)a = y^2a^2 = ya$ implies that a(yax) = (yax)a. Finally $a(yax)a = ya^2 = a$ and (yax)a(yax) = yayax = yax. \Box

Obviously, Theorem 2.1 implies that in a commutative ring, group invertibility is the same as regularity. Observe that under the hypothesis of Theorem 2.1, one has

 $a^2x = a$ and $ya^2 = a \Rightarrow a^{\#} = yax$.

Let us notice that by Theorem 2.1 one can deduce that for $a \in \mathcal{R}$,

 $a \in \mathcal{R}^{\#} \iff a\mathcal{R} = a^2\mathcal{R} \text{ and } \mathcal{R}a = \mathcal{R}a^2.$

This latter equivalence can be viewed as a ring version of "for a matrix $F \in \mathbb{C}_{n,n}$, there exists $F^{\#}$ if and only if $\operatorname{rank}(F^2) = \operatorname{rank}(F)$ " (see [5, Section 4.4]).

It was mentioned in [1, p. 10215] that for a given square complex matrix F, there exists $F^{\#}$ if and only if $\mathcal{R}(F) \cap \mathcal{N}(F) = \{0\}$, where $\mathcal{R}(\cdot)$ and $\mathcal{N}(\cdot)$ denotes, respectively, the column space and the null space of a matrix. Let us notice

(2.1)

Download English Version:

https://daneshyari.com/en/article/4628689

Download Persian Version:

https://daneshyari.com/article/4628689

Daneshyari.com