On the elements $a a^{\dagger}$ and $a^{\dagger} a$ in a ring

Julio Benítez ${ }^{\text {a,* }}$, Dragana Cvetković-Ilićc ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera $s / n, 46022$ Valencia, Spain
${ }^{\mathrm{b}}$ Faculty of Sciences and Mathematics, Department of Mathematics, University of Nis, 18000 Nis, Serbia

A R T I C L E IN F O

Keywords:

Ring with involution
Projections
Moore-Penrose inverses
Principal ideals
Annihilators

Abstract

We study various functions, principal ideals and annihilators depending on the projections $a a^{\dagger}$ and $a^{\dagger} a$ for a Moore-Penrose invertible ring element, extending recent work of O.M. Baksalary and G. Trenkler for matrices.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, the symbol \mathcal{R} will denote a unital ring (1 will be its unit) with an involution. Let us recall that an involution in a ring \mathcal{R} is a map $a \mapsto a^{*}$ in \mathcal{R} such that $(a+b)^{*}=a^{*}+b^{*},(a b)^{*}=b^{*} a^{*}$ and $\left(a^{*}\right)^{*}=a$, for any $a, b \in \mathcal{R}$.

We say that $a \in \mathcal{R}$ is regular if there exists $b \in \mathcal{R}$ such that $a b a=a$. It can be proved that for any $a \in \mathcal{R}$, there is at most one $a^{\dagger} \in \mathcal{R}$ (called the Moore-Penrose inverse of a) such that

$$
a a^{\dagger} a=a, \quad a^{\dagger} a a^{\dagger}=a^{\dagger}, \quad\left(a a^{\dagger}\right)^{*}=a a^{\dagger}, \quad\left(a^{\dagger} a\right)^{*}=a^{\dagger} a
$$

In [9] it was proved that any complex matrix has a unique Moore-Penrose inverse, however, let us notice that the proof given therein is valid to guarantee the uniqueness - if the Moore-Penrose inverse exists - in a ring with involution. If there exists such a^{\dagger} we will say that a is Moore-Penrose invertible. The subset of \mathcal{R} composed of all Moore-Penrose invertible elements will be denote by \mathcal{R}^{\dagger}. We write \mathcal{R}^{-1} for the set of all invertible elements in \mathcal{R}. The word projection will be reserved for an element q of \mathcal{R} which is self-adjoint and idempotent, that is $q^{*}=q=q^{2}$. A ring \mathcal{R} is called $*$-reducing if every element a of \mathcal{R} obeys the implication $a^{*} a=0 \Rightarrow a=0$.

Let $x \in \mathcal{R}$ and let $p \in \mathcal{R}$ be an idempotent $\left(p=p^{2}\right)$. Then we can write

$$
x=p x p+p x(1-p)+(1-p) x p+(1-p) x(1-p)
$$

and use the notations

$$
x_{11}=p x p, \quad x_{12}=p x(1-p), \quad x_{21}=(1-p) x p, \quad x_{22}=(1-p) x(1-p)
$$

Every projection $p \in \mathcal{R}$ induces a matrix representation which preserves the involution in \mathcal{R}, namely $x \in \mathcal{R}$ can be represented by means of the following matrix:

$$
x=\left[\begin{array}{cc}
p x p & p x(1-p) \tag{1.1}\\
(1-p) x p & (1-p) x(1-p)
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]
$$

[^0]The purpose of this paper is to study several ideals involving the projections $a a^{\dagger}$ and $a^{\dagger} a$, when $a \in \mathcal{R}^{\dagger}$. We shall consider two kinds of ideals. The principal ideals (also called image ideals) generated by $b \in \mathcal{R}$ are defined by $b \mathcal{R}=\{b x: x \in \mathcal{R}\}$ and $\mathcal{R} b=\{x b: x \in \mathcal{R}\}$. The annihilators (also called kernel ideals) of $b \in \mathcal{R}$ are defined by $b^{\circ}=\{x \in \mathcal{R}: b x=0\}$ and ${ }^{\circ} b=\{x \in \mathcal{R}: x b=0\}$. If \mathcal{R} is a ring with the unit and $p \in \mathcal{R}$, then it is quickly seen that $p \mathcal{R} p=\{p x p: x \in \mathcal{R}\}$ is a sub-ring whose unity is p. From now on, for an arbitrary projection p, we shall denote $\bar{p}=1-p$.

The following elementary lemma will be many times used in the sequel.
Lemma 1.1. Let \mathcal{R} be a ring with involution and $a \in \mathcal{R}$. Then
(i) $a \in \mathcal{R}^{\dagger} \Longleftrightarrow a^{*} \in \mathcal{R}^{\dagger}$. Furthermore, $\left(a^{*}\right)^{\dagger}=\left(a^{\dagger}\right)^{*}$.
(ii) If $a \in \mathcal{R}^{\dagger}$, then $a^{\dagger} \in \mathcal{R}^{\dagger}$ and $\left(a^{\dagger}\right)^{\dagger}=a$.
(iii) If $a \in \mathcal{R}^{\dagger}$, then $a^{*} a, a a^{*} \in \mathcal{R}^{\dagger}$ and

$$
\left(a^{*} a\right)^{\dagger}=a^{\dagger}\left(a^{*}\right)^{\dagger}, \quad\left(a a^{*}\right)^{\dagger}=\left(a^{*}\right)^{\dagger} a^{\dagger}, \quad a^{\dagger}=\left(a^{*} a\right)^{\dagger} a^{*}=a^{*}\left(a a^{*}\right)^{\dagger}, \quad a^{*}=a^{\dagger} a a^{*}=a^{*} a a^{\dagger}
$$

(iv) If \mathcal{R} is $*$-reducing, then $a^{*} a \in \mathcal{R}^{\dagger} \Rightarrow a \in \mathcal{R}^{\dagger}$ and $a a^{*} \in \mathcal{R}^{\dagger} \Rightarrow a \in \mathcal{R}^{\dagger}$.

Proof. It is evident that (i)-(iii) hold. We will prove only the first implication of (iv) since to prove the other one, it is sufficient to make the same argument for a^{*} instead of a. Assume that $a^{*} a \in \mathcal{R}^{\dagger}$ and let $x=\left(a^{*} a\right)^{\dagger} a^{*}$. Observe that the MoorePenrose inverse of a selfadjoint Moore-Penrose invertible element is again self-adjoint, and thus, $\left(a^{*} a\right)^{\dagger}$ is self-adjoint. Now $(a x)^{*}=\left[a\left(a^{*} a\right)^{\dagger} a^{*}\right]^{*}=a\left(a^{*} a\right)^{\dagger} a^{*}=a x ; x a=\left(a^{*} a\right)^{\dagger} a^{*} a$ is selfadjoint; $\quad x a x=\left(a^{*} a\right)^{\dagger} a^{*} a\left(a^{*} a\right)^{\dagger} a^{*}=\left(a^{*} a\right)^{\dagger} a^{*}=x$. Finally, $a^{*} a x a=a^{*} a\left(a^{*} a\right)^{\dagger} a^{*} a=a^{*} a$, and since \mathcal{R} is $*$-reducing, we get $a x a=a$.

A consequence of Lemma 1.1 is that
if $x \in \mathcal{R}^{\dagger}$ is self-adjoint, then $x x^{\dagger}=x^{\dagger} x$.
For the class of Moore-Penrose invertible elements $x \in \mathcal{R}$ such that $x x^{\dagger}=x^{\dagger} x$, the reader is referred to [3].

2. Group inverses

Let \mathcal{R} be a ring (possibly without an involution). If $a \in \mathcal{R}$, then there is at most one $x \in \mathcal{R}$ such that

$$
a x a=a, \quad x a x=x, \quad a x=x a
$$

When such x exists, we will write $x=a^{\#}$ and we will say that x is the group inverse of a and a is group invertible. The symbol $\mathcal{R}^{\#}$ will denote the set of all group invertible elements of \mathcal{R}.

In this paragraph, let F be a square complex matrix. In [1, p. 10215] it was given a list of several equivalent conditions (involving the orthogonal projectors $F F^{\dagger}$ and $F^{\dagger} F$) for F to has the group inverse. The proof given therein relies in rank matrix theory and a matrix decomposition given by Hartwig and Spindelböck [4]. However, as we shall see, many of these equivalences can be stated in a ring setting, and proved by algebraic reasonings.

We shall use the following result [10, Prop. 8.22], whose proof is included for the convenience of the reader and which implies that in a commutative ring, group invertibility is the same as the existence of a generalized inverse.

Theorem 2.1. Let \mathcal{R} be a unital ring and $a \in \mathcal{R}$. Then a is group invertible if and only if there exist $x, y \in \mathcal{R}$ such that $a^{2} x=a$ and $y a^{2}=a$.
Proof. If $a \in \mathcal{R}^{\#}$ we have $a^{2} a^{\#}=a=a^{\#} a^{2}$.
Reciprocally, assume that there exist $x, y \in \mathcal{R}$ such that $a^{2} x=a$ and $y a^{2}=a$. We will prove $y a x=a^{\#}$. First, let us see that $a x=y a^{2} x=y a$. Now, $a(y a x)=a(y a) x=a^{2} x^{2}=a x$ and $(y a x) a=y(a x) a=y^{2} a^{2}=y a$ implies that $a(y a x)=(y a x) a$. Finally $a(y a x) a=y a^{2}=a$ and $(y a x) a(y a x)=y a y a x=y a x$.

Obviously, Theorem 2.1 implies that in a commutative ring, group invertibility is the same as regularity.
Observe that under the hypothesis of Theorem 2.1, one has

$$
\begin{equation*}
a^{2} x=a \text { and } y a^{2}=a \Rightarrow a^{\#}=y a x . \tag{2.1}
\end{equation*}
$$

Let us notice that by Theorem 2.1 one can deduce that for $a \in \mathcal{R}$,

$$
a \in \mathcal{R}^{\#} \Longleftrightarrow a \mathcal{R}=a^{2} \mathcal{R} \text { and } \mathcal{R} a=\mathcal{R} a^{2} .
$$

This latter equivalence can be viewed as a ring version of "for a matrix $F \in \mathbb{C}_{n, n}$, there exists $F^{\#}$ if and only if $\operatorname{rank}\left(F^{2}\right)=\operatorname{rank}(F)$ " (see [5, Section 4.4]).

It was mentioned in [1, p. 10215] that for a given square complex matrix F, there exists $F^{\#}$ if and only if $\mathcal{R}(F) \cap \mathcal{N}(F)=\{0\}$, where $\mathcal{R}(\cdot)$ and $\mathcal{N}(\cdot)$ denotes, respectively, the column space and the null space of a matrix. Let us notice

https://daneshyari.com/en/article/4628689

Download Persian Version:
https://daneshyari.com/article/4628689

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jbenitez@mat.upv.es (J. Benítez), dragana@pmf.ni.ac.rs (D. Cvetković-Ilić).
 ${ }^{1}$ Supported by Grant No. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia.

