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1. Introduction

Throughout this paper, the symbol R will denote a unital ring (1 will be its unit) with an involution. Let us recall that an
involution in a ring R is a map a ~ a* in R such that (a+b)" = a* + b, (ab)" = b*a* and (a*)" = q, for any a,b € R.

We say that a € R is regular if there exists b € R such that aba = a. It can be proved that for any a € R, there is at most one
at € R (called the Moore-Penrose inverse of a) such that

adfa=a, d'ad =d', (ad") =ad’, (dfa)" =d'a

In [9] it was proved that any complex matrix has a unique Moore-Penrose inverse, however, let us notice that the proof
given therein is valid to guarantee the uniqueness - if the Moore-Penrose inverse exists - in a ring with involution. If there
exists such a' we will say that a is Moore-Penrose invertible. The subset of R composed of all Moore-Penrose invertible ele-
ments will be denote by Rf. We write R~ for the set of all invertible elements in R. The word projection will be reserved for
an element q of R which is self-adjoint and idempotent, that is ¢* = ¢ = g*. A ring R is called x-reducing if every element a of
‘R obeys the implication a'a =0 = a = 0.

Let x € R and let p € R be an idempotent (p = p?). Then we can write

X =pxp+px(1—p)+ (1 -p)xp+(1-p)x(1-p)
and use the notations
X1 =pXp, X2 =pxX(1-p), X1 =(1-p}xp, X2 =(1-p)x(1-p).
Every projection p € R induces a matrix representation which preserves the involution in R, namely x € R can be repre-
sented by means of the following matrix:
pxp px(1-p) ]: [Xll X12} (11
(I-p}xp (1-p)x(1-p)

X21 X2
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The purpose of this paper is to study several ideals involving the projections aa’ and aa, when a € Rf. We shall consider
two kinds of ideals. The principal ideals (also called image ideals) generated by b € R are defined by bR = {bx: x € R} and
Rb ={xb:x e R}. The annihilators (also called kernel ideals) of be R are defined by b°={xecR:bx=0} and
°b={x € R:xb=0}. If R is a ring with the unit and p € R, then it is quickly seen that pRp = {pxp : x € R} is a sub-ring
whose unity is p. From now on, for an arbitrary projection p, we shall denote p =1 — p.

The following elementary lemma will be many times used in the sequel.

Lemma 1.1. Let R be a ring with involution and a € R. Then

(i) a €e R <= a* e RI. Furthermore, (a*)' = (a')".
(ii) If a € RY, then a' € R' and (a')' = a.
(iii) If a € Rf, then a*a,aa* € R' and

(aa) =d'(a)', (aa")’ = (a")la!, a' = (a'a)'a’ =a'(aa’)’, @ =d'aa" =a‘ad’.

(iv) If R is *-reducing, then a*a e R' = a € Rl and aa* e R = a e R'.

Proof. It is evident that (i)-(iii) hold. We will prove only the first implication of (iv) since to prove the other one, it is suf-
ficient to make the same argument for a* instead of a. Assume that a*a € R and let x = (a*a)'a*. Observe that the Moore-
Penrose inverse of a selfadjoint Moore-Penrose invertible element is again self-adjoint, and thus, (a*a)’ is self-adjoint.

Now (ax)" = {a(a*a)*a*]* =a(a'a)'a* = ax;xa = (@*a)'a*a is selfadjoint; xax = (a*a)'a*a(a*a)’a* = (a*a)'a* = x. Finally,

a‘axa = a*a(a*a)’a*a = a*a, and since R is »-reducing, we get axa=a. 0O
A consequence of Lemma 1.1 is that

if x € R' is self-adjoint, then xx' = xx. (1.2)

For the class of Moore-Penrose invertible elements x € R such that xx = x'x, the reader is referred to [3].

2. Group inverses

Let R be a ring (possibly without an involution). If a € R, then there is at most one x € R such that
axa=a, Xax=x, ax=Xd.

When such x exists, we will write x = a# and we will say that x is the group inverse of a and a is group invertible. The sym-
bol R* will denote the set of all group invertible elements of R.

In this paragraph, let F be a square complex matrix. In [1, p. 10215] it was given a list of several equivalent conditions
(involving the orthogonal projectors FF" and F'F) for F to has the group inverse. The proof given therein relies in rank matrix
theory and a matrix decomposition given by Hartwig and Spindelbdck [4]. However, as we shall see, many of these equiva-
lences can be stated in a ring setting, and proved by algebraic reasonings.

We shall use the following result [10, Prop. 8.22], whose proof is included for the convenience of the reader and which
implies that in a commutative ring, group invertibility is the same as the existence of a generalized inverse.

Theorem 2.1. Let R be a unital ring and a € R. Then a is group invertible if and only if there exist x,y € R such that a>x = a and
ya® =a.

Proof. If a ¢ R* we have a?a# = a = a*a?.

Reciprocally, assume that there exist x,y € R such that a’x = a and ya? = a. We will prove yax = a*. First, let us see that
ax = ya’x = ya. Now, a(yax) = a(ya)x = a’x*> = ax and (yax)a = y(ax)a = y?a®> = ya implies that a(yax) = (yax)a. Finally
a(yax)a = ya? = a and (yax)a(yax) = yayax = yax. O

Obviously, Theorem 2.1 implies that in a commutative ring, group invertibility is the same as regularity.
Observe that under the hypothesis of Theorem 2.1, one has

a?x=aand ya®? =a = a’ =yax. (2.1)
Let us notice that by Theorem 2.1 one can deduce that for a € R,

aeR" < aR =a*R and Ra = Ra®.

This latter equivalence can be viewed as a ring version of “for a matrix F € C,,, there exists F* if and only if
rank(F?) = rank(F)” (see [5, Section 4.4]).

It was mentioned in [1, p. 10215] that for a given square complex matrix F, there exists F* if and only if
R(F) NN (F) = {0}, where R(-) and N(-) denotes, respectively, the column space and the null space of a matrix. Let us notice



Download English Version:

https://daneshyari.com/en/article/4628689

Download Persian Version:

https://daneshyari.com/article/4628689

Daneshyari.com


https://daneshyari.com/en/article/4628689
https://daneshyari.com/article/4628689
https://daneshyari.com

