Contents lists available at SciVerse ScienceDirect



Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

## On a symmetric system of max-type difference equations

### Stevo Stević

Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia

#### ARTICLE INFO

Key words: Max-type system Difference equation Positive solution Boundedness Global attractivity

#### ABSTRACT

We study behavior of positive solutions of the following max-type system of difference equations

$$x_{n+1} = \max\left\{c, \frac{y_n^n}{x_{n-1}^p}\right\}, \quad y_{n+1} = \max\left\{c, \frac{x_n^n}{y_{n-1}^p}\right\}, \quad n \in \mathbb{N}_0,$$

where  $p, c \in (0, \infty)$ , extending some results in the literature. Among other results, we prove that if  $p, c \in (0, 1)$ , then every positive solution of the system converges to (1, 1). © 2013 Elsevier Inc. All rights reserved.

#### 1. Introduction

Max-type difference equations, which appeared for the first time in control theory, have attracted some attention recently (see, e.g., [1–8,16,19–25,27,30,31,37–39] and the related references therein). However, although there is a considerable interest in studying systems of difference equations (see, e.g., [9–17,26,28,29,31–36] and the related references therein), only a few papers deal with systems of max-type difference equations (see, e.g., [16,30,31]).

In [2] we gave an elegant proof, which is related to the proof of Theorem 2 in [18], of the result which says that every positive solution of the next difference equation

$$x_{n+1} = \max\left\{c, \frac{x_n}{x_{n-(k+1)}}\right\}, \quad n \in \mathbb{N}_0,$$
(1)

where parameter *c* is positive, is bounded.

This result motivated us to investigate the behavior of positive solutions of the following max-type difference equation

$$x_{n+1} = \max\left\{c, \frac{x_n^p}{x_{n-1}^p}\right\}, \quad n \in \mathbb{N}_0,$$
(2)

where *c* and *p* are positive numbers (see [19]).

Here we study the following max-type system of difference equations

$$x_{n+1} = \max\left\{c, \frac{y_n^p}{x_{n-1}^p}\right\}, \quad y_{n+1} = \max\left\{c, \frac{x_n^p}{y_{n-1}^p}\right\}, \quad n \in \mathbb{N}_0,$$
(3)

where  $p, c \in (0, \infty)$ , which is a natural extension of Eq. (2).

We show that positive solutions of system (3) have properties similar to those of positive solutions of Eq. (2) (solution  $(x_n, y_n)_{n \ge -1}$  of system (3) is called positive if  $x_n > 0$  and  $y_n > 0$  for every  $n \ge -1$ ). More specifically, we prove the following: all positive solutions of system (3) are bounded when  $p \in (0, 4)$ ; every positive solution is eventually equal to (c, c), when

E-mail address: sstevic@ptt.rs

<sup>0096-3003/\$ -</sup> see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.02.008

 $p \in (0,4)$  and  $c \ge 1$ ; there are unbounded solutions for  $p \ge 4$ ; and for  $p, c \in (0,1)$ , all positive solutions of system (3) converge to (1,1).

#### 2. Boundedness character of system (3)

This section is devoted to studying the boundedness character of positive solutions of system (3).

2.1. Case 
$$p \in (0, 4), c > 0$$

In this case the following result holds.

**Theorem 1.** Let  $p \in (0, 4)$  and c > 0. Then all positive solutions of system (3) are bounded.

**Proof.** Assume that  $(x_n, y_n)_{n \ge -1}$  is a positive solution of system (3). Then the following estimate obviously holds

 $\min\{x_n, y_n\} \ge c, \quad n \in \mathbb{N}.$ 

Now we show that the sequence  $(x_n)_{n \ge -1}$  is bounded. Since system (3) is symmetric with respect to variables  $x_n$  and  $y_n$ , then if we show that the sequence  $(x_n)_{n \ge -1}$  is bounded, it will follow that the sequence  $(y_n)_{n \ge -1}$  is bounded too, which will imply the boundedness of solution  $(x_n, y_n)_{n \ge -1}$ .

By using (3) we obtain

$$x_{n+1} = \max\left\{c, \frac{y_n^p}{x_{n-1}^p}\right\} = \max\left\{c, \left(\frac{y_n}{x_{n-1}}\right)^p\right\} = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \frac{x_{n-1}^{p-1}}{y_{n-2}^p}\right\}\right)^p\right\}.$$
(5)

If  $p \in (0, 1]$ , then from (4) and (5) we have that

$$x_{n+1} = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \frac{1}{x_{n-1}^{1-p}y_{n-2}^p}\right\}\right)^p\right\} \leqslant \max\left\{c, 1, \frac{1}{c^p}\right\}$$
(6)

for  $n \ge 3$ . From (4) and (6) the boundedness of  $(x_n)_{n \ge -1}$  follows in this case.

Now assume that p > 1. Then from (5) and (3), we have

$$x_{n+1} = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \left(\frac{x_{n-1}}{y_{n-2}^{\frac{p}{p-1}}}\right)^{p-1}\right\}\right)^{p}\right\} = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \left(\max\left\{\frac{c}{y_{n-2}^{\frac{p}{p-1}}}, \frac{y_{n-2}^{-\frac{p}{p-1}}}{y_{n-2}^{\frac{p}{p-1}}}\right\}\right)^{p-1}\right\}\right)^{p}\right\}.$$
(7)

If  $p \in (1, 2]$ , then from (4) and (7) we have that

$$x_{n+1} = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \left(\max\left\{\frac{c}{y_{n-2}^{\frac{p}{p-1}}}, \frac{1}{y_{n-2}^{\frac{p(2-p)}{p-1}}}x_{n-3}^{p}\right\}\right)^{p-1}\right\}\right)^{p}\right\} \leqslant \max\left\{c, 1, \frac{1}{c^{p}}, \frac{1}{c^{p^{2}}}\right\}, \text{ for } n \ge 4.$$
(8)

From (4) and (8) the boundedness of  $(x_n)_{n \ge -1}$  follows in this case.

Continuing with this procedure and using a simple inductive argument, we have that for each fixed  $l \in \mathbb{N}$ 

$$x_{n+1} = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \left(\max\left\{\frac{c}{y_{n-2}}, \left(\frac{y_{n-2}}{x_{n-3}^{p-1}}, \left(\frac{y_{n-2}}{x_{n-3}^{p-1}}\right)^{p-\frac{p}{p-1}}\right\}\right)^{p-1}\right\}\right)^{p}\right\} = \cdots \\ = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \left(\cdots, \left(\max\left\{\frac{c}{x_{n-2l+1}^{p-1}}, \frac{x_{n-2l+1}^{p-2l-1}}{y_{n-2l}^{p-2l}}\right\}\right)^{p-2l-2}, \cdots\right)^{p-1}\right\}\right)^{p}\right\}$$
(9)

for  $n \ge 2l + 1$ , and

$$x_{n+1} = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \left(\max\left\{\frac{c}{y_{n-2}^{\frac{p}{p-1}}}, \left(\frac{y_{n-2}}{x_{n-3}^{\frac{p}{p-1}}}\right)^{p-\frac{p}{p-1}}\right\}\right)^{p-1}\right\}\right)^{p}\right\} = \cdots \\ = \max\left\{c, \left(\max\left\{\frac{c}{x_{n-1}}, \left(\cdots, \left(\max\left\{\frac{c}{y_{n-2l}^{p_{2l}}}, \frac{y_{n-2l}^{p-2l}}{x_{n-2l-1}^{p}}\right\}\right)^{p-p_{2l-1}}\cdots\right)^{p-1}\right\}\right)^{p}\right\}$$
(10)

Download English Version:

# https://daneshyari.com/en/article/4628812

Download Persian Version:

https://daneshyari.com/article/4628812

Daneshyari.com