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a b s t r a c t

We study behavior of positive solutions of the following max-type system of difference
equations

xnþ1 ¼max c;
yp

n

xp
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� �
; ynþ1 ¼ max c;

xp
n

yp
n�1

� �
; n 2 N0;

where p; c 2 ð0;1Þ, extending some results in the literature. Among other results, we prove
that if p; c 2 ð0;1Þ, then every positive solution of the system converges to ð1;1Þ.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Max-type difference equations, which appeared for the first time in control theory, have attracted some attention recently
(see, e.g., [1–8,16,19–25,27,30,31,37–39] and the related references therein). However, although there is a considerable
interest in studying systems of difference equations (see, e.g., [9–17,26,28,29,31–36] and the related references therein), only
a few papers deal with systems of max-type difference equations (see, e.g. [16,30,31]).

In [2] we gave an elegant proof, which is related to the proof of Theorem 2 in [18], of the result which says that every
positive solution of the next difference equation

xnþ1 ¼ max c;
xn

xn�ðkþ1Þ

� �
; n 2 N0; ð1Þ

where parameter c is positive, is bounded.
This result motivated us to investigate the behavior of positive solutions of the following max-type difference equation

xnþ1 ¼ max c;
xp

n

xp
n�1

� �
; n 2 N0; ð2Þ

where c and p are positive numbers (see [19]).
Here we study the following max-type system of difference equations

xnþ1 ¼ max c;
yp

n

xp
n�1
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; ynþ1 ¼ max c;
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n

yp
n�1

� �
; n 2 N0; ð3Þ

where p; c 2 ð0;1Þ, which is a natural extension of Eq. (2).
We show that positive solutions of system (3) have properties similar to those of positive solutions of Eq. (2) (solution

ðxn; ynÞnP�1 of system (3) is called positive if xn > 0 and yn > 0 for every n P �1). More specifically, we prove the following:
all positive solutions of system (3) are bounded when p 2 ð0;4Þ; every positive solution is eventually equal to ðc; cÞ, when
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p 2 ð0;4Þ and c P 1; there are unbounded solutions for p P 4; and for p; c 2 ð0;1Þ, all positive solutions of system (3) con-
verge to ð1;1Þ.

2. Boundedness character of system (3)

This section is devoted to studying the boundedness character of positive solutions of system (3).

2.1. Case p 2 ð0; 4Þ; c > 0

In this case the following result holds.

Theorem 1. Let p 2 ð0;4Þ and c > 0. Then all positive solutions of system (3) are bounded.

Proof. Assume that ðxn; ynÞnP�1 is a positive solution of system (3). Then the following estimate obviously holds

minfxn; yngP c; n 2 N: ð4Þ

Now we show that the sequence ðxnÞnP�1 is bounded. Since system (3) is symmetric with respect to variables xn and yn,
then if we show that the sequence ðxnÞnP�1 is bounded, it will follow that the sequence ðynÞnP�1 is bounded too, which will
imply the boundedness of solution ðxn; ynÞnP�1.

By using (3) we obtain
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If p 2 ð0;1�, then from (4) and (5) we have that

xnþ1 ¼max c; max
c

xn�1
;

1
x1�p

n�1yp
n�2

( ) !p( )
6 max c;1;

1
cp

� �
ð6Þ

for n P 3. From (4) and (6) the boundedness of ðxnÞnP�1 follows in this case.
Now assume that p > 1. Then from (5) and (3), we have
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If p 2 ð1;2�, then from (4) and (7) we have that
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From (4) and (8) the boundedness of ðxnÞnP�1 follows in this case.
Continuing with this procedure and using a simple inductive argument, we have that for each fixed l 2 N
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for n P 2lþ 1, and
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