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a b s t r a c t

A general coupled nonlinear Schrödinger system with the self-phase modulation, cross-
phase modulation and four-wave mixing terms is investigated. The system is still integra-
ble with the variable coefficients. Through the Hirota bilinear method, one- and two-soli-
ton solutions are derived via symbolic computation. With the asymptotic analysis, it is
found that the two-soliton solutions admit the inelastic and elastic collisions depending
on the choice of solitonic parameters. A new inelastic collision phenomenon occurring in
this system is that both the amplitudes of two components of each soliton get suppressed
or enhanced after the collision, which might provide us with a different approach of signal
amplification.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Able to stably transmit long distance in fibers with negligible attenuation, an optical soliton arises as a balance between
the group velocity dispersion and self-phase modulation (SPM) [1–4]. Dynamic of optical-soliton propagation in a nolinear
fiber is described by the nonlinear Schrödinger (NLS) equation [5]. In certain physical situations, solitons propagate simul-
taneously in multiple fields with different frequencies or polarizations, which can be modeled by the coupled NLS (CNLS)
equations [6]. The CNLS equations have such applications as in the soliton wavelength division multiplexing [7], soliton
switch in birefringent optical fibers [8,9], and multichannel bit parallel-wavelength optical fiber network [10].

Work has been done on the study of soliton propagation and collision in the CNLS systems [11–15]. For example, in Ref.
[11], two-soliton solutions for the Manakov system (2-CNLS equations with special parametric choice) have been obtained
and a shape-changing collision has been distinguished. Afterwards, the analysis has been extended to the case of N-CNLS
system, and the similar property has been found that the energy can transfer from one soliton to another after collision
[14,15].

In this paper, we will consider a general CNLS system, which is given as [16]

ipt þ pxx þ 2ðajpj2 þ bjqj2 þ cpq� þ c�qp�Þp ¼ 0;

iqt þ qxx þ 2ðajpj2 þ bjqj2 þ cpq� þ c�qp�Þq ¼ 0;
ð1Þ

where p and q are the complex amplitudes of the electrical fields in the two orthogonal polarizations, the subscripts t and x
denote the temporal and spatial partial derivatives, and the terms with a and b respectively represent the SPM and cross-
phase modulation (CPM) effects, and the last two terms including c and c� describe the four-wave mixing effects, the asterisk
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and subscripts denote the complex conjugation and partial derivatives, respectively. It is noted that a and b are real con-
stants, and c is a complex one.

When a ¼ b and c ¼ 0, System (1) reduces to the Manakov system [17]. When a ¼ �b and c ¼ 0, System (1) reduces to the
N ¼ 2 case considered in Ref. [14]. With the arbitrary coefficients a; b and c, System (1) remains integrable and its Lax pair
has been presented in Ref. [16], where the N-soliton solutions have been derived through the Riemann–Hilbert method, but
the soliton collisions are only presented in the special case a ¼ b ¼ 0 and c ¼ 1.

In this paper, we will concentrate on the general case a ¼ b – 0 and analyze the collision property with different choices
of parameters. With symbolic computation [18–21], this paper will be arranged as follows. In Section 2, the bilinear form for
System (1) will be derived, and the analytic one- and two-soliton solutions will be presented. In Section 3, through the
asymptotic analysis on the two-soliton solutions, it will be found whether the collision between solitons is elastic or inelastic
depends on the choice of soliton parameters. Further, owing to the existence of four-mixing wave, the inelastic collision
shows some new feature, which can not be seen in the Manakov system but provide the possibility for future application
to signal amplification. Section 4 will be our conclusions.

2. Bilinear form and soliton solutions

In order to understand the dynamics of System (1), it is essential to obtain the soliton solutions associated with the sys-
tem. Via the Hirota bilinear method [22], one- and two-soliton solutions for System (1) can be deduced, and the procedure
can be extended to obtain N-soliton solutions [23]. Nevertheless, we will concentrate on the study of one- and two-soliton
solutions for System (1) in this paper.

System (1) can be expressed in the bilinear form

iDt þ D2
x

� �
ðg � f Þ ¼ 0; ð2aÞ

iDt þ D2
x

� �
ðh � f Þ ¼ 0; ð2bÞ

D2
x ðf � f Þ ¼ 2ðajgj2 þ bjhj2 þ cgh� þ c�hg�Þ; ð2cÞ

with the following transformations

p ¼ g
f
; q ¼ h

f
; ð3Þ

where g and h are the complex functions of t and x, and f is a real one. Dx and Dt are the bilinear differential operators [22]
defined by

Dm
x Dn

t ðf � gÞ ¼
@

@x
� @

@x0

� �m
@

@t
� @

@t0

� �n

f ðx; tÞgðx0; t0Þjx0¼x; t0¼t; ð4Þ

where m and n are the positive integers, x’ and t’ are the formal variables. Eq. (2) can be solved by introducing the following
power series expansions as

g ¼ eg1 þ e3g3 þ e5g5 þ � � � ; h ¼ eh1 þ e3h3 þ e5h5 þ � � � ; f ¼ 1þ e2f2 þ e4f4 þ e6f6 þ � � � ;

where gj’s and hj’s (j ¼ 1;3;5; . . .) are the complex functions of t and x; f n’s (n ¼ 2;4;6; . . .) are the real ones which will be
determined later, and e is the formal parameter.

2.1. One-soliton solutions

In order to obtain one-soliton solutions for System (1), the power series expansions for g;h and f are terminated as

g ¼ eg1; h ¼ eh1; f ¼ 1þ e2f2: ð5Þ

Substituting Eqs. (5) into Eq. (2) and collecting the terms with the same power of e, we have the following solutions

g1 ¼ a1eh1 ; h1 ¼ b1eh1 ; f 2 ¼ eh1þh�1þc1 ; ð6Þ

with

h1 ¼ k1xþ ik2
1t; ec1 ¼ ja1j2aþ jb1j2bþ a1b�1cþ a�1b1c�

ðk1 þ k�1Þ
2 ;

where a1; b1 and k1 are all complex constants. The resulting one-soliton solutions for System (1) are given as

p ¼ a1eh1

1þ eh1þh�1þc1
¼ a1

2
e�

c1
2 ei h1I sech h1R þ

c1

2

� �
; ð7Þ

q ¼ b1eh1

1þ eh1þh�1þc1
¼ b1

2
e�

c1
2 ei h1I sech h1R þ

c1

2

� �
; ð8Þ
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