FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Resolvents and solutions of singular Volterra integral equations with separable kernels

Leigh C. Becker

Department of Mathematics, Christian Brothers University, 650 E. Parkway South, Memphis, TN 38104-5581, United States

ARTICLE INFO

Keywords:
Closed-form solutions
Resolvents
Separable kernels
Singular kernels
Volterra integral equations

In honor of Professor T. A. Burton for his seminal contributions to Liapunov theory for integral and fractional differential equations

ABSTRACT

The Volterra integral equation

$$x(t) = a(t) + \int_0^t B(t, s)x(s) ds \tag{1}$$

with a kernel of the form B(t,s) = p(t)q(s) is investigated, where a, p, and q are functions that are defined a.e. on an interval [0,T] and are measurable. The main result of this paper states that if qa is Lebesgue integrable on [0,T], the sign of B(t,s) does not change for almost all (t,s), and if there is a function f that is continuous on [0,T], except possibly at countably many points, with B(t,t) = f(t) a.e. on [0,T], then the function x defined by

$$x(t) := a(t) + \int_0^t R(t, s)a(s) ds,$$
 (2)

where

$$R(t,s) := B(t,s)e^{\int_s^t B(u,u)\,du},\tag{3}$$

solves (1) a.e. on [0, T]. Three diverse examples illustrate the efficacy of using (2) and (3) to calculate solutions of (1). Two of the examples involve singular kernels: the solution of one of them is nowhere continuous on (0, T).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Volterra integral equations of the form

$$x(t) = a(t) + \int_{0}^{t} B(t, s)x(s) ds$$
 (1.1)

with separable kernels crop up in certain applications, such as in some heat conduction problems with mixed-type boundary conditions. Lima and Diogo point this out in a paper [12, p. 538] in which they investigate the numerical solutions of such equations. The purpose of this paper is to show that for a kernel B(t,s) with the separable form p(t)q(s) there is a closed-form formula for the resolvent of the kernel, even if it has singularities, in terms of which the solution of (1.1) can be expressed. Furthermore, closed-form solutions of (1.1) can be calculated for a variety of specific equations as we shall demonstrate in Section 4.

Peter Linz, in his monograph on Volterra equations [13], states and proves a result for the case of continuous a, p, and q from which solutions of (1.1) can be calculated [13, pp. 7–10]. We follow his presentation up to a point but then modify it to obtain Theorem 1.1 below. Its formulation, particularly (1.3), is scarcely known, if not unknown.

We begin by first supposing that a, p, and q are differentiable on [0, T] and that $p(t) \neq 0$. Dividing (1.1) by p(t) and letting y(t) := x(t)/p(t), we get

$$y(t) = \frac{a(t)}{p(t)} + \int_0^t p(s)q(s)y(s)\,ds.$$

Differentiation then yields the linear differential equation

$$y'(t) - p(t)q(t)y(t) = \frac{d}{dt} \left[\frac{a(t)}{p(t)} \right].$$

Multiplying by the integrating factor

$$\mu(t) := e^{-\int_0^t p(s)q(s)\,ds},$$

we obtain

$$\frac{d}{dt}[\mu(t)y(t)] = \mu(t)\frac{d}{dt}\left[\frac{a(t)}{p(t)}\right],$$

which can also be written as

$$\frac{d}{dt}\left[\mu(t)y(t) - \mu(t)\frac{a(t)}{p(t)}\right] = -\frac{a(t)}{p(t)}\mu'(t).$$

Integration yields

$$\mu(t)y(t) - \mu(t)\frac{a(t)}{p(t)} - \left(\mu(0)y(0) - \mu(t)\frac{a(0)}{p(0)}\right) = -\int_0^t \frac{a(s)}{p(s)}\mu'(s)\,ds.$$

Because y(0) = a(0)/p(0) and $\mu'(s) = -p(s)q(s)\mu(s)$, this simplifies to

$$y(t) = \frac{a(t)}{p(t)} + \frac{1}{\mu(t)} \int_0^t \mu(s)q(s)a(s) ds.$$

Thus the solution of (1.1) is

$$x(t) = a(t) + \frac{p(t)}{\mu(t)} \int_{s}^{t} \mu(s)q(s)a(s) ds.$$
 (1.2)

Formula (1.2) is derived in Linz's monograph [13, p. 8]. However, to conform to a generalization of this result appearing later in this paper, we write (1.2) in another form. As p(t)q(s) = B(t,s) and

$$\frac{\mu(s)}{\mu(t)} = e^{\int_s^t p(u)q(u)\,du} = e^{\int_s^t B(u,u)\,du},$$

we can express (1.2) in terms of the kernel B as follows:

$$x(t) = a(t) + \int_0^t B(t,s) e^{\int_s^t B(u,u) du} a(s) ds.$$

This suggests the first theorem. Its proof shows that our initial supposition about the differentiability of a, p, and q can be weakened to continuity.

Theorem 1.1. Let a, p, and q be continuous on an interval [0,T]. For the separable kernel B(t,s)=p(t)q(s), define

$$R(t,s) := B(t,s)e^{\int_{s}^{t} B(u,u) du}$$
 (1.3)

Then

$$x(t) := a(t) + \int_0^t R(t, s)a(s) \, ds \tag{1.4}$$

is the unique continuous solution of (1.1) on [0,T].

Proof. Define the function *y* by

$$y(t) := a(t) + \int_0^t R(t,s)a(s) ds,$$

Download English Version:

https://daneshyari.com/en/article/4628834

Download Persian Version:

https://daneshyari.com/article/4628834

Daneshyari.com