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a b s t r a c t

We consider fuzzy stochastic integral equations with stochastic Lebesgue trajectory inte-
grals and fuzzy stochastic Itô trajectory integrals. Some methods of construction of approx-
imate solutions to such the equations are examined. We study the Picard type
approximations, the Carathéodory type approximations and the Maruyama type approxi-
mations of solutions. In considered framework, the solutions and approximate solutions
are mappings with values in the space of fuzzy sets with basis of square integrable random
vectors. Under Lipschitz and linear growth conditions each sequence of considered approx-
imate solutions converges to the exact unique solution of the given fuzzy stochastic inte-
gral equation. For each type of approximate solutions, we show that the sequence of
approximations is uniformly bounded and obtain some bounds for a distance between
nth approximation and exact solution.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Thinking about a physical problem which is transformed into a deterministic problem of ordinary differential equations
we cannot usually be sure that this modeling is perfect because a typical feature of real-world phenomena is uncertainty.
This term is mostly understood as stochastic uncertainty and methods of probability theory and stochastic analysis are uti-
lized in its investigations. A great number of real-world phenomena in control theory, physics, biology, economics can be
modeled by stochastic dynamical systems whose evolution is governed by random forces. Stochastic differential equations
[2,21,25] constitute a mathematical tool for dealing with such phenomena.

On the other hand, it is commonly accepted that uncertainty can come from other sources than randomness. For example,
this takes place if we have incomplete or vague informations on parameters of a considered dynamic system. The data of
modeled systems can be imperfect due to a lack of measurement precision. This type of uncertainty is not stochastic. It is
connected with an imprecision of human knowledge rather than with occurrence of random events. This kind of uncertainty
is called epistemic uncertainty (vagueness, imprecision, ambiguity, softness, fuzziness).

The coexistence of stochastic and epistemic uncertainty in dynamic systems motivate to look for some mathematical
tools which could be appropriate in description of evolution of such the hybrid systems. The fuzzy stochastic differential
equations can be adequate in modeling of the dynamics of phenomena which are subjected to two kinds of uncertainties:
randomness and fuzziness, simultaneously (see [9–13,16–19,24]).

In the studies of fuzzy stochastic differential equations, a main problem is a concept of fuzzy stochastic Itô integral which
should cover the notion of classical stochastic Itô integral. In [12,16,17] one can find of two different approaches in defining
fuzzy stochastic integral which can successfully be applied in the studies of stochastic fuzzy differential equations. Basing on
the notion of set-valued stochastic Itô trajectory integral (see [6,7,22,23]) used in the problems of stochastic inclusions, fuzzy
stochastic Itô integral is treated in [16] as a fuzzy set of the space of square integrable random vectors. This approach is also
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exploited in [14,18,19] in the studies of existence of solutions to fuzzy stochastic integral equations. The solutions to such
equations are not fuzzy stochastic processes but just some mappings taking values in the set of fuzzy sets of the space of
square integrable random vectors. In this way randomness is incorporated in the values of solutions.

In [12,17] the diffusion part of stochastic fuzzy differential equations is an embedding of real Itô integral into fuzzy num-
bers space. The solutions obtained by usage of this approach are some fuzzy stochastic processes. In [13,15] one can also find
the further studies in this line.

In this paper, working in the framework established in [16], we consider three types of approximate solutions to fuzzy
stochastic integral equations. They are Picard, Carathéodory and Maruyama approximations. Under Lipschitz condition
and linear growth condition imposed on the equation coefficients, we show that each sequence of approximate solutions
converge to the exact solution of the equation. Some uniform bounds for each sequence of approximations are established.
Also, we present some estimations of distance between nth approximate solution and exact solutions, respectively to each of
the three types of considered approximations. Since every ordinary set is also a fuzzy set, all the results of this paper apply to
set-valued stochastic integral equations studied as in [16].

2. Preliminaries

In this section we collect a background material needed in context of solutions to fuzzy stochastic integral equations.
Let X be a separable Banach space, Kb

c ðXÞ the family of all nonempty closed bounded and convex subsets of X . The Haus-
dorff metric HX in Kb

c ðXÞ is defined by

HX ðA;BÞ ¼max sup
a2A

distX ða; BÞ; sup
b2B

distXðb;AÞ
� �

;

where distXða;BÞ ¼ infb2Bka� bkX and jj � jjX denotes a norm in X .
It is known (see [3]) that ðKb

c ðXÞ;HX Þ is a complete metric space.
Let ðU;U;lÞ be a measure space. Recall that a set-valued mapping F : U ! Kb

c ðXÞ is said to be measurable if it satisfies:

u 2 U : FðuÞ \ C – ;f g 2 U for every closed set C � X :

A measurable multifunction F is said to be Lp-integrably bounded (p P 1), if u # HX ðFðuÞ; f0gÞ belongs to LpðU;U;l; RÞ.
Denote I ¼ ½0; T�, where T <1. Let ðX;A; fAtgt2I; PÞ be a complete filtered probability space satisfying usual hypotheses,

i.e. fAtgt2I is an increasing and right continuous family of sub-r-algebras of A and A0 contains all P-null sets.
Let fBðtÞgt2I be an fAtg-Brownian motion. We put U ¼ I �X, U ¼ N , where N denotes the r-algebra of the nonanticipat-

ing elements in I �X, i.e.

N ¼ fA 2 bI �A : At 2 At for every t 2 Ig;

where bI is the Borel r-algebra of subsets of I and At ¼ fx : ðt;xÞ 2 Ag. Finally we set l ¼ k� P as a measure, where k is
the Lebesgue measure on ðI; bIÞ.

A d-dimensional stochastic process f : I �X! Rd is called nonanticipating if f is N -measurable.
Consider the space

L2
N ðk� PÞ :¼ L2ðI �X;N ; k� P; RdÞ:

Then for every f 2 L2
N ðk� PÞ and s; t 2 I; s < t the Itô stochastic integral

R t
s f ðsÞdBðsÞ exists (cf. [2,21,25]) and one hasR t

s f ðsÞdBðsÞ 2 L2ðX;At ; P; RdÞ � L2ðX;A; P; RdÞ.
Let F : I �X! Kb

c ðRdÞ be a set-valued stochastic process, i.e. a family fFðtÞgt2I of A-measurable set-valued mappings
FðtÞ : X! Kb

c ðRdÞ; t 2 I. We call F nonanticipating if it is N -measurable. Let us define the set

S2
N ðF; k� PÞ :¼ ff 2 L2

N ðk� PÞ : f 2 F; k� P-a:e:g:

If F is L2
N ðk� PÞ-integrably bounded, then by Kuratowski and Ryll-Nardzewski selection Theorem (see e.g. [5]) it follows that

S2
N ðF; k� PÞ– ;. Hence for every s; t 2 I; s < t we can define the set-valued trajectory Itô stochastic integralZ t

s
FðsÞdBðsÞ :¼

Z t

s
f ðsÞdBðsÞ : f 2 S2

N ðF; k� PÞ
� �

:

By this definition we have
R t
s FðsÞdBðsÞ � L2ðX;At ; P; RdÞ.

In the rest of the paper, for the sake of convenience, we will write L2 instead of L2ðX;A; P; RdÞ and L2
t instead of

L2ðX;At ; P; RdÞ where t 2 I.
Now we consider the set-valued stochastic Aumann trajectory integral. Similarly as in the preceding considerations, let

F : I �X! Kb
c ðRdÞ be a nonanticipating and L2

N ðk� PÞ-integrably bounded set-valued stochastic process. Then for
s; t 2 I; s < t we define set-valued stochastic Aumann trajectory integral

R t
s FðsÞds as a subset of L2ðX;At ; P; RdÞ and de-

scribed by

M.T. Malinowski / Applied Mathematics and Computation 219 (2013) 11278–11290 11279



Download	English	Version:

https://daneshyari.com/en/article/4628835

Download	Persian	Version:

https://daneshyari.com/article/4628835

Daneshyari.com

https://daneshyari.com/en/article/4628835
https://daneshyari.com/article/4628835
https://daneshyari.com/

