
An upwind-like discontinuous Galerkin method for hyperbolic 
systems q

Tie Zhang ⇑, Shun Yu 
Department of Mathematics, Northeastern University, Shenyang 110004, China 

a r t i c l e i n f o

Keywords:
Discontinuous Galerkin method 
Friedrichs’ systems 
Upwind-like scheme 
Stability analysis 
Optimal error estimate 

a b s t r a c t

We investigate an upwind-like DG method for solving first-order hyperbolic problems 
written as the Friedrichs’ systems. Under certain condition, this DG scheme may be 
semi-exp licit such that the discrete equations can be solved layer by layer. We give the sta- 
bility analysis and error estimate of order kþ 1=2 in the DG-norm. In particular, for some 
hyperbolic systems, we show that the convergence rate is of order kþ 1 in the L2-norm if 
the Qk-elements are used on rectangular meshes. Finally, we provide some numerical 
experimen ts to illustrate the theoretical analysis. 

� 2013 Elsevier Inc. All rights reserved. 

1. Introduction 

The discontinuo us Galerkin (DG) finite element methods have attracted more and more attention in the field of numerical 
partial differential equation s during the last decades, see [1,2] and the references therein. The main advantages of the DG 
method are the high order accuracy, the high degree of parallelism, and its great suitability for h; p, and hp refinements in- 
volved in adaptive computations. Historical ly, the original DG method was introduced by Reed and Hill [15] in 1973 to sim- 
ulate the neutron transport equation, and the first theoretical analysis of DG methods for hyperbolic equation was performed 
by Lesaint and Raviart [12] in 1974. This analysis was subsequently improved by Johnson and Pitkaranta [9] who established 
that the optimal order of convergence in the L2-norm is kþ 1=2 if piecewise polynomials of degree k are used. Peterson in 
[14] further proved that the convergence rate of order kþ 1=2 is sharp for DG methods within quasi-un iform triangulation. 
However, a better error estimate of order kþ 1 can also be achieved in at least two circumstances : the case of rectangular 
meshes [12] and the case of some structured triangular meshes, see [3,16].

Many DG methods have also been presented for solving the first-order hyperbolic problems written as the Friedrichs’ 
systems,Xd

i¼1

Ai@iuþ Bu ¼ f; in X � Rd: ð1:1Þ

Basically these DG methods can be classified as both the numerical flux method and the penalty method, see 
[5,6,8,11,13,17 ,18] . In the numerica l flux method, the key technique is to chose the numerica l trace Dnbu properly in the weak 
form of problem (1.1)
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Dnbu � v ¼ Z
K

f � v; ð1:2Þ

where matrix Dn ¼
Pd

i¼1Aini, n ¼ ðn1; . . . ;ndÞT is the outward unit normal vector on the element boundary @K. In the tradi- 
tional upwind-like scheme (see [13,17,10,1]), the numerical trace is defined by first splitting matrix Dn into the symmetric 
form Dn ¼ Aþ þ A� with Aþ P 0 (positive semi-definite) and A� 6 0 (negative semi-definite), and then setting the numerical 
trace Dnbu ¼ Aþuþ þ A�u�, where uþ and u� are the traces of u on @K from the interior and exterior of K, respectivel y. In this 
paper, we will present an upwind-like DG scheme which is slightly different from the traditional one. We first decompose 
each Ai into Ai ¼ Aþi þ A�i , and then define the numerica l trace by setting Dnbu ¼Pd

i¼1Aþi nibu þPd
i¼1A�i nibu, and 

A�i nibu ¼ A�i niuþðA�i niu�Þ if A�i ni P 0ðA�i ni 6 0Þ. The advantages of our scheme are as follows. Firstly, the matrices only need 
to be split once before the triangulatio n is made, while in the traditional method, since matrix Dn depends on the boundary 
normal vector n, then for each element K and each face F K � @K , we always need to split DnjFK

. Therefor, such splitting is 
very consuming in practical computations. Secondly, if Ai P 0 for some fixed i, our scheme will be explicit in the xi-axis
direction so that the discrete problem may be solved layer by layer along xi-directio n (see Section 2). For arbitrary shape- 
regular triangula tions, we give the stability analysis and error estimate of order kþ 1=2 in the DG-norm which is stronger 
than the L2-norm. In particular, under the assumption of all Ai P 0, we show that the convergence rate is of order kþ 1 in the 
L2-norm if the Qk-elements are used on rectangular meshes and the solution u is in Hkþ2ðXÞ. To the authors’ knowledge, the 
best error estimate of DG methods for hyperbolic systems now is of order kþ 1=2, so our here result is new and has some 
theoretical significance into the literature. 

Throughout this paper, let X be a bounded open polyhedral domain in Rd, d P 2. For any open subset D � X and integers 
m P 0, we denote by HmðDÞ the usual Sobolev spaces equipped with norm k � km;D and semi-norm j � jm;D, and denote by 
ð�; �ÞD and k � k0;D the standard inner product and norm in the space H0ðDÞ ¼ L2ðDÞ. When D ¼ X, we omit the index D.
We will use letter C to represent a generic positive constant , independent of the mesh size h.

The plan of this paper is as follows. In Section 2, the DG method is analyzed and the stability is discussed. Section 3 is
devoted to the error analysis in the DG-norm. In Section 4, we derive the optimal error estimate of order kþ 1 in the L2-norm
on rectangu lar meshes. Finally, in Section 5, we provide some numerical experiments to illustrate our theoretical analysis. 

2. Problem and its DG approximation 

Consider the following first-order hyperbolic system: 

Lu � A � ruþ Bu ¼ f; x 2 X; ð2:1Þ
ðM � DnÞu ¼ 0; x 2 @X: ð2:2Þ

Here, A ¼ ðA1; . . . ;AdÞT is a vector matrix function, A � ru ¼
Pd

i¼1Ai@ iu, Ai, B and M are some given m�m matrices,
Ai 2 ½W1

1ðXÞ�
m�m, B;M 2 ½L1ðXÞ�m�m, Dn ¼ A � n ¼

Pd
i¼1Aini, nðxÞ ¼ ðn1; . . . ;ndÞT is the outward unit normal vector at the point 

x 2 @X, u ¼ ðu1; . . . ;umÞT and f ¼ ðf1; . . . ; fmÞT with fi 2 L2ðXÞ are m-dimensional vector functions. We assume that problem 
(2.1)–(2.2) is a positive and symmetric hyperboli c system (Friedrichs’ system [7]), namely, 

Ai ¼ AT
i ; i ¼ 1; . . . ;d; x 2 X; ð2:3Þ

Bþ BT � div A P 2r0I; x 2 X; ð2:4Þ
M þMT P 0; x 2 @X; ð2:5Þ
KerðM � DnÞ þ KerðM þ DnÞ ¼ Rm; x 2 @X; ð2:6Þ

where constant r0 > 0, div A ¼ @1A1 þ � � � þ @dAd, and by using the expression A P 0ð6 0Þ we imply that the matrix A is po- 
sitive (negative) semi-definite. 

Problem (2.1)–(2.2) can describe many important physics processes. An example of such Friedrichs’ system is as follows. 
Maxwell’s equations . Let r and l be two positive functions in L1ðXÞ uniformly bounded away from zero. Consider the 

following Maxwell ’s equations in R3

lH þr� E ¼ h; x 2 X;

rE�r� H ¼ g; x 2 X;

E� n ¼ 0; x 2 @X;

where H and E are three-dim ensional vector functions. This problem can be cast into the form of Friedrichs’ system by setting 
u ¼ ðH; EÞT ,

Ai ¼
O Q i

Q T
i O

� �
;i¼1;2;3; B ¼

lI O

O rI

� �
; f ¼

h

g

� �
;
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