Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation

M. Lamnii^a, H. Mraoui^{a,*}, A. Zidna^b

^a Université Mohammed I, Faculté des Sciences, Département de Mathmatiques et Informatique, Oujda, Morocco ^b LITA, Université Lorraine, METZ, France

ARTICLE INFO

Keywords: Multivariate spline Quadrangulation Refinement Blossoms Quasi-interpolation

ABSTRACT

In this paper, we describe the construction of a suitable normalized B-spline representation for special multivariate quadratic spline space $S_2^{1,0}(\Delta)$ over a refined quadrangulation. We then develop as an application, a general theory of quasi-interpolants based on this representation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The flexibility of geometric modelling of complex surfaces relies crucially on the use of an appropriate mathematical representation [3]. A surface *s* is usually represented as a linear combination of basis functions ϕ_i ,

$$s = \sum_{i=1}^{N} c_i \phi_i.$$

The surface can be locally controlled and edited in a predictable way when the basis functions ϕ_i , i = 1, ..., N, have a local support and form a convex partition of unity, i.e.,

$$\phi_i \ge 0$$
 and $1 = \sum_{i=1}^N \phi_i$.

Continuity conditions can be imposed to obtain smooth surfaces.

The application of spline in numerical computation requires efficient algorithms for constructing locally supported bases for the spline spaces. Dierckx [2] presented a geometric method to construct a normalized basis for the space of Powell–Sabin quadratic splines. Speleers [8] developed a suitable normalized B-spline representation for C^2 -continuous quintic Powell–Sabin splines. Recently, Speleers [9] constructs a suitable normalized B-spline representation for reduced cubic Clough-Tocher splines.

In this paper we consider special multivariate quadratic spline space $S_2^{1,0}(\Delta)$ over a refined quadrangulation. This space has been recently studied in [10]. More precisely, its dimension and the explicit representations of the Hermite basis splines are obtained by using the smoothing cofactor-conformality method. In this paper, we will construct a compact normalized basis for this space. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction is based on the determination of a set of triangles that must contain a specific set of points. We are able to define control points and give Marsden identity for representing quadratic polynomials. Using some basic properties of the

^{*} Corresponding author. E-mail addresses: m_lamnii1@yahoo.fr (M. Lamnii), hamid_mraoui@yahoo.fr (H. Mraoui), zidna@univ-metz.fr (A. Zidna).

^{0096-3003/\$ -} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.04.027

blossoming principle, we also show how to construct discrete and differentiable quasi-interpolant which reproduce quadratic polynomials.

The paper is organized as follows. In Section 2 we review some general concepts of polynomials on triangles, and we present the multivariate spline space $S_{2,0}^{1,0}(\Delta)$. Section 3 covers the construction of a normalized B-spline basis. In Section 4, we develop a general theory of quasi-interpolants based on this representation. Differential and discrete quasi-interpolants are constructed. Finally, in order to illustrate our results, we give in Section 5 some numerical examples.

2. Multivariate spline space $\mathcal{S}_{\mathbf{2}}^{\mathbf{1},\mathbf{0}}(\Delta)$

2.1. Blossoming

In this subsection, we review some basic properties of the blossoming principle. The following results can be found in [6].

Theorem 1. Given a nonnegative integer d. For each bivariate polynomial $p_d : \mathbb{R}^2 \to \mathbb{R}$ of degree d there exists a unique blossom (or polar form) of $p_d \mathcal{B}[p_d] : (\mathbb{R}^2)^d \to \mathbb{R}$ satisfying

• $\mathcal{B}[p_d]$ is symmetric,

 $\mathcal{B}[p_d](z_1,\ldots,z_d) = \mathcal{B}[p_d](z_{\pi(1)},\ldots,z_{\pi(d)})$

for any permutation π of the integers $1, \ldots, d$.

• $\mathcal{B}[p_d]$ is multiaffine,

$$\mathcal{B}[p_d](z_1, (a\widehat{z} + b\widetilde{z}), z_3, \dots, z_d) = a\mathcal{B}[p_d](z_1, \widehat{z}, z_3, \dots, z_d) + b\mathcal{B}[p_d](z_1, \widetilde{z}, z_3, \dots, z_d),$$

where a + b = 1.

• $\mathcal{B}[p_d]$ is diagonal, $p_d(z) = \mathcal{B}[p_d](\underbrace{z, \dots, z}_d)$, for all $z \in \mathbb{R}^2$.

Define \mathbb{P}_d as the space of bivariate polynomials of total degree *d*. Then, we have the following result which can be proved by using Theorem 1.

Lemma 2. Let R_1 , R_2 be two polynomials in \mathbb{P}_1 . If $p(x, y) = R_1(x, y)R_2(x, y)$, then we have

$$\mathcal{B}[p](z_1, z_2) = \frac{1}{2}(R_1(z_1)R_2(z_2) + R_1(z_2)R_2(z_1)).$$

2.2. Polynomials on triangles

Consider a triangle $\mathcal{T}(V_1, V_2, V_3)$ in a plane with vertices V_i , i = 1, 2, 3. Then each polynomial $p \in \mathbb{P}_d$ on \mathcal{T} has a unique representation

$$p(x,y) = \sum_{|\alpha|=d} b_{\alpha} \mathfrak{B}^{d}_{\alpha}(\lambda),$$

with $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{N}^3$ a multiindex of length $|\alpha| = \alpha_1 + \alpha_2 + \alpha_3$, $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ the barycentric coordinates of (x, y) with respect to \mathcal{T} , and

$$\mathfrak{B}^d_{\alpha}(\lambda) = \frac{d!}{\alpha_1!\alpha_2!\alpha_3!} \lambda_1^{\alpha_1} \lambda_2^{\alpha_2} \lambda_3^{\alpha_3},\tag{1}$$

the Bernstein Bézier polynomials of degree *d* on the triangle. The coefficients b_{α} are called the Bézier ordinates. The coefficients b_{α} are called Bézier ordinates, and the Bézier domain points ξ_{α} are defined as the points with barycentric coordinates $(\alpha_1/d, \alpha_2/d, \alpha_3/d)$. The points

 $(\xi_{\alpha}, b_{\alpha}) \in \mathbb{R}^3, \quad |\alpha| = d$

are the Bézier control points of *p*.

On the other hand, Ramshaw [6] has shown that the Bézier ordinates for a polynomial relative to a triangle \mathcal{T} can be obtained by evaluating the polynomial's blossom at the vertices of \mathcal{T} . More precisely, for all $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{N}^3$ where $|\alpha| = \alpha_1 + \alpha_2 + \alpha_3 = d$, we have

$$b_{\alpha} = \mathcal{B}[p_d]\left(\underbrace{\overbrace{V_1,\ldots,V_1}^{d},\underbrace{V_2,\ldots,V_2}_{\alpha_2},\underbrace{V_3,\ldots,V_3}_{\alpha_3}}_{\alpha_3}\right)$$

Download English Version:

https://daneshyari.com/en/article/4628949

Download Persian Version:

https://daneshyari.com/article/4628949

Daneshyari.com