Local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation

M. Lamnii ${ }^{\text {a }}$, H. Mraoui ${ }^{\text {a,* }}$, A. Zidna ${ }^{\text {b }}$
${ }^{a}$ Université Mohammed I, Faculté des Sciences, Département de Mathmatiques et Informatique, Oujda, Morocco
${ }^{\mathrm{b}}$ LITA, Université Lorraine, METZ, France

A R TICLE IN FO

Keywords:

Multivariate spline
Quadrangulation
Refinement
Blossoms
Quasi-interpolation

Abstract

In this paper, we describe the construction of a suitable normalized B-spline representation for special multivariate quadratic spline space $\mathcal{S}_{2}^{1,0}(\Delta)$ over a refined quadrangulation. We then develop as an application, a general theory of quasi-interpolants based on this representation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The flexibility of geometric modelling of complex surfaces relies crucially on the use of an appropriate mathematical representation [3]. A surface s is usually represented as a linear combination of basis functions ϕ_{i},

$$
S=\sum_{i=1}^{N} c_{i} \phi_{i}
$$

The surface can be locally controlled and edited in a predictable way when the basis functions $\phi_{i}, i=1, \ldots, N$, have a local support and form a convex partition of unity, i.e.,

$$
\phi_{i} \geqslant 0 \quad \text { and } \quad 1=\sum_{i=1}^{N} \phi_{i}
$$

Continuity conditions can be imposed to obtain smooth surfaces.
The application of spline in numerical computation requires efficient algorithms for constructing locally supported bases for the spline spaces. Dierckx [2] presented a geometric method to construct a normalized basis for the space of Powell-Sabin quadratic splines. Speleers [8] developed a suitable normalized B-spline representation for \mathcal{C}^{2}-continuous quintic Pow-ell-Sabin splines. Recently, Speleers [9] constructs a suitable normalized B-spline representation for reduced cubic CloughTocher splines.

In this paper we consider special multivariate quadratic spline space $\mathcal{S}_{2}^{1,0}(\Delta)$ over a refined quadrangulation. This space has been recently studied in [10]. More precisely, its dimension and the explicit representations of the Hermite basis splines are obtained by using the smoothing cofactor-conformality method. In this paper, we will construct a compact normalized basis for this space. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction is based on the determination of a set of triangles that must contain a specific set of points. We are able to define control points and give Marsden identity for representing quadratic polynomials. Using some basic properties of the

[^0]blossoming principle, we also show how to construct discrete and differentiable quasi-interpolant which reproduce quadratic polynomials.

The paper is organized as follows. In Section 2 we review some general concepts of polynomials on triangles, and we present the multivariate spline space $\mathcal{S}_{2}^{1,0}(\Delta)$. Section 3 covers the construction of a normalized B-spline basis. In Section 4 , we develop a general theory of quasi-interpolants based on this representation. Differential and discrete quasi-interpolants are constructed. Finally, in order to illustrate our results, we give in Section 5 some numerical examples.

2. Multivariate spline space $\mathcal{S}_{2}^{1,0}(\Delta)$

2.1. Blossoming

In this subsection, we review some basic properties of the blossoming principle. The following results can be found in [6].
Theorem 1. Given a nonnegative integer d. For each bivariate polynomial $p_{d}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of degree d there exists a unique blossom (or polar form) of $p_{d} \mathcal{B}\left[p_{d}\right]:\left(\mathbb{R}^{2}\right)^{d} \rightarrow \mathbb{R}$ satisfying

- $\mathcal{B}\left[p_{d}\right]$ is symmetric,

$$
\mathcal{B}\left[p_{d}\right]\left(z_{1}, \ldots, z_{d}\right)=\mathcal{B}\left[p_{d}\right]\left(z_{\pi(1)}, \ldots, z_{\pi(d)}\right)
$$

for any permutation π of the integers $1, \ldots, d$.

- $\mathcal{B}\left[p_{d}\right]$ is multiaffine,

$$
\mathcal{B}\left[p_{d}\right]\left(z_{1},(a \widehat{z}+b \widetilde{z}), z_{3}, \ldots, z_{d}\right)=a \mathcal{B}\left[p_{d}\right]\left(z_{1}, \widehat{z}, z_{3}, \ldots, z_{d}\right)+b \mathcal{B}\left[p_{d}\right]\left(z_{1}, \widetilde{z}, z_{3}, \ldots, z_{d}\right)
$$

where $a+b=1$.

- $\mathcal{B}\left[p_{d}\right]$ is diagonal, $p_{d}(z)=\mathcal{B}\left[p_{d}\right](\underbrace{z, \ldots, z}_{d})$, for all $z \in \mathbb{R}^{2}$.

Define \mathbb{P}_{d} as the space of bivariate polynomials of total degree d. Then, we have the following result which can be proved by using Theorem 1.

Lemma 2. Let R_{1}, R_{2} be two polynomials in \mathbb{P}_{1}. If $p(x, y)=R_{1}(x, y) R_{2}(x, y)$, then we have

$$
\mathcal{B}[p]\left(z_{1}, z_{2}\right)=\frac{1}{2}\left(R_{1}\left(z_{1}\right) R_{2}\left(z_{2}\right)+R_{1}\left(z_{2}\right) R_{2}\left(z_{1}\right)\right) .
$$

2.2. Polynomials on triangles

Consider a triangle $\mathcal{T}\left(V_{1}, V_{2}, V_{3}\right)$ in a plane with vertices $V_{i}, i=1,2,3$. Then each polynomial $p \in \mathbb{P}_{d}$ on \mathcal{T} has a unique representation

$$
p(x, y)=\sum_{|\alpha|=d} b_{\alpha} \mathfrak{B}_{\alpha}^{d}(\lambda),
$$

with $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{N}^{3}$ a multiindex of length $|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}, \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ the barycentric coordinates of (x, y) with respect to \mathcal{T}, and

$$
\begin{equation*}
\mathfrak{B}_{\alpha}^{d}(\lambda)=\frac{d!}{\alpha_{1}!\alpha_{2}!\alpha_{3}!} \lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \lambda_{3}^{\alpha_{3}}, \tag{1}
\end{equation*}
$$

the Bernstein Bézier polynomials of degree d on the triangle. The coefficients b_{α} are called the Bézier ordinates. The coefficients b_{α} are called Bézier ordinates, and the Bézier domain points ξ_{α} are defined as the points with barycentric coordinates $\left(\alpha_{1} / d, \alpha_{2} / d, \alpha_{3} / d\right)$. The points

$$
\left(\xi_{\alpha}, b_{\alpha}\right) \in \mathbb{R}^{3}, \quad|\alpha|=d
$$

are the Bézier control points of p.
On the other hand, Ramshaw [6] has shown that the Bézier ordinates for a polynomial relative to a triangle \mathcal{T} can be obtained by evaluating the polynomial's blossom at the vertices of \mathcal{T}. More precisely, for all $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{N}^{3}$ where $|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}=d$, we have

$$
b_{\alpha}=\mathcal{B}\left[p_{d}\right](\overbrace{\alpha_{1}}^{\overbrace{1}, \ldots, V_{1}}, \underbrace{V_{2}, \ldots, V_{2}}_{\alpha_{2}}, \underbrace{V_{3}, \ldots, V_{3}}_{\alpha_{3}})
$$

https://daneshyari.com/en/article/4628949

Download Persian Version:

https://daneshyari.com/article/4628949

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: m_lamnii1@yahoo.fr (M. Lamnii), hamid_mraoui@yahoo.fr (H. Mraoui), zidna@univ-metz.fr (A. Zidna).

