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a b s t r a c t

In this paper, we describe the construction of a suitable normalized B-spline representation
for special multivariate quadratic spline space S1;0

2 ðDÞ over a refined quadrangulation. We
then develop as an application, a general theory of quasi-interpolants based on this
representation.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The flexibility of geometric modelling of complex surfaces relies crucially on the use of an appropriate mathematical rep-
resentation [3]. A surface s is usually represented as a linear combination of basis functions /i,

s ¼
XN

i¼1

ci/i:

The surface can be locally controlled and edited in a predictable way when the basis functions /i; i ¼ 1; . . . ;N, have a local
support and form a convex partition of unity, i.e.,

/i P 0 and 1 ¼
XN

i¼1

/i:

Continuity conditions can be imposed to obtain smooth surfaces.
The application of spline in numerical computation requires efficient algorithms for constructing locally supported bases

for the spline spaces. Dierckx [2] presented a geometric method to construct a normalized basis for the space of Powell–Sa-
bin quadratic splines. Speleers [8] developed a suitable normalized B-spline representation for C2-continuous quintic Pow-
ell–Sabin splines. Recently, Speleers [9] constructs a suitable normalized B-spline representation for reduced cubic Clough-
Tocher splines.

In this paper we consider special multivariate quadratic spline space S1;0
2 ðDÞ over a refined quadrangulation. This space

has been recently studied in [10]. More precisely, its dimension and the explicit representations of the Hermite basis splines
are obtained by using the smoothing cofactor-conformality method. In this paper, we will construct a compact normalized
basis for this space. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The
construction is based on the determination of a set of triangles that must contain a specific set of points. We are able to de-
fine control points and give Marsden identity for representing quadratic polynomials. Using some basic properties of the
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blossoming principle, we also show how to construct discrete and differentiable quasi-interpolant which reproduce qua-
dratic polynomials.

The paper is organized as follows. In Section 2 we review some general concepts of polynomials on triangles, and we pres-
ent the multivariate spline space S1;0

2 ðDÞ. Section 3 covers the construction of a normalized B-spline basis. In Section 4, we
develop a general theory of quasi-interpolants based on this representation. Differential and discrete quasi-interpolants are
constructed. Finally, in order to illustrate our results, we give in Section 5 some numerical examples.

2. Multivariate spline space S1;0
2 ðDÞ

2.1. Blossoming

In this subsection, we review some basic properties of the blossoming principle. The following results can be found in [6].

Theorem 1. Given a nonnegative integer d. For each bivariate polynomial pd : R2 ! R of degree d there exists a unique blossom
(or polar form) of pd B½pd� : ðR2Þd ! R satisfying

� B½pd� is symmetric,

B½pd�ðz1; . . . ; zdÞ ¼ B½pd�ðzpð1Þ; . . . ; zpðdÞÞ

for any permutation p of the integers 1; . . . ; d.
� B½pd� is multiaffine,

B½pd�ðz1; ðabz þ bezÞ; z3; . . . ; zdÞ ¼ aB½pd�ðz1;bz; z3; . . . ; zdÞ þ bB½pd�ðz1;ez; z3; . . . ; zdÞ;

where aþ b ¼ 1.
� B½pd� is diagonal, pdðzÞ ¼ B½pd�ðz; . . . ; z|fflfflfflffl{zfflfflfflffl}

d

Þ, for all z 2 R2.

Define Pd as the space of bivariate polynomials of total degree d. Then, we have the following result which can be proved
by using Theorem 1.

Lemma 2. Let R1; R2 be two polynomials in P1. If pðx; yÞ ¼ R1ðx; yÞR2ðx; yÞ, then we have

B½p�ðz1; z2Þ ¼
1
2

R1ðz1ÞR2ðz2Þ þ R1ðz2ÞR2ðz1Þð Þ:

2.2. Polynomials on triangles

Consider a triangle T ðV1;V2;V3Þ in a plane with vertices Vi; i ¼ 1;2;3. Then each polynomial p 2 Pd on T has a unique
representation

pðx; yÞ ¼
X
jaj¼d

baB
d
aðkÞ;

with a ¼ ða1;a2;a3Þ 2 N3 a multiindex of length jaj ¼ a1 þ a2 þ a3, k ¼ ðk1; k2; k3Þ the barycentric coordinates of ðx; yÞ with
respect to T , and

B
d
aðkÞ ¼

d!

a1!a2!a3!
ka1

1 ka2
2 ka3

3 ; ð1Þ

the Bernstein Bézier polynomials of degree d on the triangle. The coefficients ba are called the Bézier ordinates. The coeffi-
cients ba are called Bézier ordinates, and the Bézier domain points na are defined as the points with barycentric coordinates
ða1=d;a2=d;a3=dÞ. The points

ðna; baÞ 2 R3; jaj ¼ d

are the Bézier control points of p.
On the other hand, Ramshaw [6] has shown that the Bézier ordinates for a polynomial relative to a triangle T can be ob-

tained by evaluating the polynomial’s blossom at the vertices of T . More precisely, for all a ¼ ða1;a2;a3Þ 2 N3 where
jaj ¼ a1 þ a2 þ a3 ¼ d, we have

ba ¼ B½pd�
V1; . . . ;V1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

a1

;
V2; . . . ;V2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

a2

;
V3; . . . ;V3|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

a3

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{d0BBB@
1CCCA:
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