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Keywords: For the I', g-function, we derive several properties and characteristics related to convexity,
Completely monotonic functions log-convexity and complete monotonicity. Similar properties and characteristics of the cor-
Logarithmically completely monotonic responding (p, q)-analogue y, ,(x) of the digamma or the y/-function have also been estab-
functions lished. By applying the main results in this paper when p — oo and ¢ — 1, we obtain all of

Log-convex functions

(p. q)-Gamma function the results given in several earlier works by (for example) Krasniqi, Shabani, and other

(p.q)-Psi function authors. Some potential areas of applications of the results presented in this paper are also

Borel measure indicated. . .
Laplace transforms © 2013 Elsevier Inc. All rights reserved.

Young's inequality

1. Introduction
The familiar (Euler) gamma function I'(x) is defined (for x > 0) by
I'(x) :/ tletdt (x> 0).
0

The digamma (or psi-) function y(x) is defined (for x > 0) as the logarithmic derivative of Euler’s gamma function I'(x),
that is, by
_d _T'(x)
Y(x) = dx {logI'(x)} = T

The following integral and series representations are known (see [1,18,23]):

Y(x) = — +/%ﬂdt—f 71+iL (x> 0) (1.1)
=7 o 1—et 7 77X £=n(n+x) ’ ’
where ) denotes the Euler-Mascheroni constant defined by (see also a recent work [7])
n
y=—-¢(1):= r%im (Z % —log n) =~ (0.577215664901532860606512090082402431042 - - -. (1.2)
T\ k=t
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Euler also introduced the following interesting variant of the gamma function I'(x) (see [3,21]):

- pp* _ P
DO =) p) XA D. (1) -

(x>0; peN:={1,2,3,...} = No \ {0}),
so that
I'(x) = limI,(x). (1.4)

p—oo

The p-analogue of the y/-function is defined as the logarithmic derivative of the I',-function as follows (see [16]):

d I, (x)
l//p(x) - a{lOg FP(X)} - rp(x) . (15)
The following representations for the functions I'y(x) and y,(x) hold true:
P t p
I(x) = / (1 ”> -1t (1.6)
0 p
0o e—xt(] _ e—(pﬂ)t)
Wy (x) = logp—/0 ﬁdt (1.7)
and
m o — (—ym . [ e amiing
vy (%) = (=1)"" s (1-e )dt. (1.8)
Jackson [9-11] (see also [23,25]) defined the basic (or g-) analogue of the gamma function as follows:
(4:9) 1-x
Tyx) === (1- 0<g<1 19
q(X) (Q";Q)m( q) " (0<qg<T1) (1.9)
and
( 1 1) <X>
@59 ), 1-x .\ 2 (1.10)
Iix)=—"—"""—>=(q-1 > 1),
a(X) s, q-1)""q (q>1),
where, and in what follows,
(a:q) ] j
a,q),=—>=-> and (a;9),=][(1-a
@0 = g (@q). = ][0 -ad)
and
) 1— q;.
[7] = 1-q 0)':=1 and [n)!':=[1]2)[3]...[n] (neN).

The basic (or g-) gamma function I'y(x) has the following integral representation (see, for details, [9-11]):
Iy(t) = / XTE, % dyx,
Jo

where E; defined by
00 i-1) Xj
B = Zq’Tﬁ =[1+1-9x9),
0

is the g-analogue of the classical exponential function e*. The g-analogue of the y/-function is defined (for 0 < g < 1) as the
logarithmic derivative of the g-gamma function, that is, by (see also [17])

I, (%)
LCy(x)”

gl = S {l0gTyx)) =

Many properties of the g-gamma function were derived by Askey [4] (see also [23, p. 490 et seq.]).
It is well-known that

limy(x) — O(x) and  limy,(x) — y(x).
q—1- q—1—
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