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1. Introduction

In [1], the upper and lower bounds for the spectral norms of r-circulant matrices are obtained by Shen and Cen. The lower
bounds for the norms of Cauchy-Toeplitz and Cauchy-Hankel matrices are given by Wu in [2]. In [3-5], Solak and Bozkurt
have found some bounds for the norms of Cauchy-Toeplitz, Cauchy-Hankel and circulant matrices.

Let A be any n x n complex matrix. The well known spectral norm of the matrix A is

_ AH
Il = \/max | Z(A"A) |

where 2;(A”A) is eigenvalue of A”A and A" is conjugate transpose of the matrix A. k-principal minor of the matrix A is denoted by
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where 1 <iy <ip <...<i<n(1<k<n)[6]
By a circulant matrix of order n is meant a square matrix of the form [8]

Co C1 Cr ... Cp

Cn1 Co Cq Cn2

C = circ(co,C1,...,Cn 1) = Ch2 Cph1 Co ... Cp3
C1 G G Co
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Let A = [a;] be an n x n positive matrix: a; > 0 for 1 < i, j < n. Then there is a positive real number r, called the Perron
root or the Perron-Frobenius eigenvalue, such that r is an eigenvalue of A and any other eigenvalue A (possibly, complex)
is strictly smaller than r in absolute value, | 4 |< r. Thus, the spectral radius p(A) is equal to r [10, p. 64].

Now we define our matrices. x;s are any integer numbers sequence for i = 1,2,...,n. Let matrix A, be following form:

A= [aij]?jzl =[xi— Xj]?j:l' (2)

Obviously, A, is skew-symmetric matrix, i.e. A,f = —A,. Since eigenvalues of a skew-hermitian matrix are pure imaginary,
eigenvalues of the matrix iA, are real where i is complex unity.

(y,) is any positive integer numbers sequence and y; is ith the component of the sequence (y,) fori =0, 1,2, .... Let matrix
C, be following form:

Cy =circyo,Y1,---»¥n_1)- 3)

The main objective of this paper is to obtain the spectral norms of the matrices A, and C, in (2) and (3).

2. Main results

Theorem 1. Let the matrices Ay be as in (2). Then

12
AX||2:{ Z (erS)z} ) (4)

1<r<s<n

where n > 4.

Proof. If we substract (i — 1)th row from ith row of the matrix A, fori =n,n—1,...,2, then we obtain
r 0 X1 — Xp X1 — X3 X1 — X
X2 — X1 Xy — X1 Xy — X1 X2 — X1
X3 — X3 X3 — X2 X3 — Xy X3 — Xy
B, =
Xn-1—Xp-2 Xp-1—Xpn2 Xp-1 —Xp2 ... Xp1—Xn2
L Xn — Xn—1 Xn — Xn—1 Xn — Xn—1 cee Xn — Xn-1 |

Obviously, rank(By) = rank(Ay) = 2. Since the matrix A, is skew-symmetric, the matrix iA, is symmetric where i is complex
unity. Then all the eigenvalues of the matrix iA, are real numbers. Moreover, rank(A,) = rank(iAy). Since determinants of all k-
square submatrices of the matrix iA, are zero for k > 3, all principal k-minors of the matrix iA, are zero for k > 3. Then char-
acteristic polynomial of the matrix iA,

A (2) = 2"+ a2 a2, )

where (—1)*q, is the sum of principal k-minors of the matrix iA, where k = 1,2 [9]. On the other hand since rank(iA,) = 2,
two eigenvalues of the matrix iA, are nonzero. If i/ is the eigenvalue of the matrix A,, then —i/ is an eigenvalue of A,. Then
a1 = —tr(As) = —tr(iAx) = >"k_,; 2 = 0 where 4, are the eigenvalues of the matrix iA,. Coefficient a, is the sum of principal 2-
minors of any square matrix Ay. i.e.
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Then we have

(TS i
a, = g iA = E i
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< <

1<r<s<n
Hence from (5) we obtain

Aip, () = " — ( >

1<r<s<n

(X — xs)2> 2,

Then
liAdz = 1Az = D (&% —x)”.

1<r<s<n

The proof of (4) is completed. O



Download English Version:

https://daneshyari.com/en/article/4628986

Download Persian Version:

https://daneshyari.com/article/4628986

Daneshyari.com


https://daneshyari.com/en/article/4628986
https://daneshyari.com/article/4628986
https://daneshyari.com

