Membership tests for images of algebraic sets by linear projections

Jonathan D. Hauenstein ${ }^{\text {a, } *, 1}$, Andrew J. Sommese ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States
${ }^{\mathrm{b}}$ Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, United States

A R T I CLE IN F O

Keywords:

Numerical algebraic geometry
Polynomial system
Witness sets
Projections
Membership test
Numerical irreducible decomposition
Geometric genus
Lüroth quartics

Abstract

Given a witness set for an irreducible variety V and a linear map π, we describe membership tests for both the constructible algebraic set $\pi(V)$ and the algebraic set $\overline{\pi(V)}$. We also provide applications and examples of these new tests including computing the codimension one components of $\overline{\overline{\pi(V)} \backslash \pi(V)}$. Additionally, we also describe computing the geometric genus of a curve section of an irreducible component of the solution set of a polynomial system and a test for deciding whether a plane quartic curve is a Lüroth quartic.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Given a polynomial system $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{n}$, an ℓ-dimensional irreducible component $V \subset f^{-1}(0)$, and a linear map $\pi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{K}$, a "witness set" for $\overline{\pi(V)}$ was constructed in [7] from a witness set for V, hereafter called a pseudo-witness set for $\overline{\pi(V)}$. This approach reduces computations on $\overline{\pi(V)}$ to computations on V without using elimination theory to construct a polynomial system g such that $\overline{\pi(V)}$ is an irreducible component of $g^{-1}(0)$.

The main results of this article, presented in Section 3, are algorithms for performing a numerical membership test for both $\pi(V)$ and $\overline{\pi(V)}$.

Chevalley's theorem [4] states that the image of a constructible set, e.g., $\pi(V)$, is a constructible set. ${ }^{3}$ Effective symbolic methods for performing computations with constructible sets are discussed in [5,19].

In Section 4, we use these membership tests to compute a numerical decomposition of the irreducible components of $\overline{\overline{\pi(V)} \backslash \pi(V)}$ of codimension one in $\overline{\pi(V)}$ and use this to develop an approach for computing the geometric genus of a generic curve section of $\overline{\pi(V)}$.

The necessary background material is presented in Section 2 which also codifies the properties of our substitute for witness sets into the notion of a pseudo-witness set.

In Section 5, we present examples using our new membership tests.

[^0]
2. Background material

We collect some background material in this section. Throughout, we assume $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{n}$ is a polynomial system and define $\mathcal{V}(f)$ to be the set of points in \mathbb{C}^{N} which f maps to 0 . The algebraic set $\mathcal{V}(f)$ is reduced and, in particular, all of the irreducible components of $\mathcal{V}(f)$ have multiplicity one. We let $f^{-1}(0)$ denote $\mathcal{V}(f)$ with its underlying scheme structure, which includes the multiplicity information of the components of $\mathcal{V}(f)$ with regard to f.

2.1. Witness sets

Suppose that $V \subset f^{-1}(0)$ is an ℓ-dimensional irreducible algebraic set of degree d. A witness set for V is the triple $\{f, \mathcal{L}, W\}$ where \mathcal{L} consists of ℓ general linear polynomials on \mathbb{C}^{N} and $W=V \cap \mathcal{V}(\mathcal{L})$. The witness point set W consists of d points. A finite set \mathcal{W} with $W \subset \mathcal{W} \subset V$ is called a witness point superset for V.

The multiplicity of V with respect to f is the multiplicity of any $w \in W$ as a root of $\left[\begin{array}{l}f \\ \mathcal{L}\end{array}\right]$. The component V is said to be generically reduced with respect to f if the multiplicity of V with respect to f is 1 . Otherwise, V is said to be generically nonreduced, which we consider in the following section. See Chap. 13 [23] for more details regarding witness sets.

2.2. Deflation

If V is generically nonreduced with respect to f, then the deflation approach of [10] produces a polynomial system $F: \mathbb{C}^{N} \rightarrow \mathbb{C}^{m}$, with $m \geqslant n$, such that $F^{-1}(0)$ has an irreducible and generically reduced component \widehat{V} which, as a set, is equal to V. By renaming as necessary, we will assume without loss of generality that V is generically reduced with respect to f.

It should be noted that more traditional versions of deflation (see also [8,11,12] and Section 13.3 .2 and 15.2 .2 [23]) change the dimension of the ambient space and may replace V with an algebraic set V^{\prime} that maps generically one-to-one onto a dense subset of V.

2.3. Randomization

Let $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{n}$ be a polynomial system and $1 \leqslant k \leqslant n$. For $A \in \mathbb{C}^{k \times(n-k)}$, let

$$
\mathcal{R}(f ; k)=\left[I_{k} A\right] \cdot f,
$$

where I_{k} is the $k \times k$ identity matrix. It is a consequence of Bertini's theorem, e.g. [22] or Section 13.5 [23], that any irreducible codimension k component of $\mathcal{V}(f)$ is an irreducible component of $\mathcal{V}(\mathcal{R}(f ; k))$ for a nonempty Zariski open (and hence dense) set of matrices $A \in \mathbb{C}^{k \times(n-k)}$. Thus, we will assume without loss of generality that $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{k}$ is a polynomial system where $V \subset f^{-1}(0)$ is a codimension k irreducible component.

2.4. Pseudo-witness sets

Let $f: \mathbb{C}^{N} \rightarrow \mathbb{C}^{n}$ be a polynomial system and $\{f, \mathcal{L}, W\}$ be a witness set for an irreducible and generically reduced component $V \subset f^{-1}(0)$ of dimension ℓ. Suppose that $\pi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{K}$ is a linear map and $B \in \mathbb{C}^{K \times N}$ such that $\pi(x)=B x$.

Even though the set $\pi(V)$ might not be an algebraic set, it is very close to an algebraic set. More specifically, $\pi(V)$ is a constructible algebraic set which means that it is a member of the Boolean algebra of sets constructed from algebraic sets by the operations of finite unions, finite intersections, and complementation. A typical example is the projection onto (x, y) of $\mathcal{V}(x-y z)$: the image is $\left(\mathbb{C}^{2} \backslash \mathcal{V}(y)\right) \cup\{(0,0)\}$.

The closure of a constructible algebraic set C in the complex topology \bar{C} is the same as the closure of C in the Zariski topology. The same statement holds for the interior C° of C with $\overline{C^{\circ}}=\bar{C}$. In particular, since the dimensions of \bar{C} and C° are equal, the dimension of C is well-defined. Finally, if \bar{C} is pure k-dimensional, then $\bar{C} \cap L=C^{\circ} \cap L$ for a general affine linear space L of codimension k. Additional details for constructible algebraic sets is provided in Appendix A [23].

Let $\ell^{\prime}=\operatorname{dim} \overline{\pi(V)}$. For $i=1, \ldots, \ell^{\prime}$, let $b_{i} \in \mathbb{C}^{N}$ be general elements in the row span of B and, for $i=\ell^{\prime}+1, \ldots, \ell$, let $b_{i} \in \mathbb{C}^{N}$ be general elements in \mathbb{C}^{N}. We call the quadruple $\left\{f, \pi, \mathcal{L}^{\prime}, W^{\prime}\right\}$ [7], where

$$
\mathcal{L}^{\prime}(x)=\left[\begin{array}{c}
b_{1} \cdot x-1 \\
\vdots \\
b_{\ell} \cdot x-1
\end{array}\right] \quad \text { and } \quad W^{\prime}=V \cap \mathcal{V}\left(\mathcal{L}^{\prime}\right)
$$

a pseudo-witness set for $\pi(V)$ with $\operatorname{deg} \overline{\pi(V)}=|\pi(W)|$.
A pseudo-witness set may be efficiently used to fulfill the same tasks for which a witness set for $\overline{\pi(V)}$ would be used if we had a set of polynomials on \mathbb{C}^{K} whose solution set contained $\overline{\pi(V)}$ as an irreducible component. One example is using pseu-do-witness sets in place of witness sets to work with the numerical irreducible decomposition [20] of the closure of the image of an algebraic map, e.g. Section 2.1.3 [1].

https://daneshyari.com/en/article/4629007

Download Persian Version:
https://daneshyari.com/article/4629007

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hauenstein@ncsu.edu (J.D. Hauenstein), sommese@nd.edu (A.J. Sommese).
 URLs: http://www.math.ncsu.edu/~jdhauens (J.D. Hauenstein), http://www.nd.edu/~sommese (A.J. Sommese).
 ${ }^{1}$ This author was supported by North Carolina State University, Institute Mittag-Leffler (Djursholm, Sweden), and NSF Grant DMS-1262428.
 ${ }^{2}$ This author was supported by the Duncan Chair of the University of Notre Dame, Institute Mittag-Leffler (Djursholm, Sweden), and NSF Grant DMS0712910.
 ${ }^{3}$ A constructible subset of an algebraic set X is any set in the Boolean algebra of subsets of X obtained by starting with algebraic subsets of X and closing up under the operations of finite unions and complementation.

