Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Membership tests for images of algebraic sets by linear projections

Jonathan D. Hauenstein^{a,*,1}, Andrew J. Sommese^{b,2}

^a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States ^b Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, United States

ARTICLE INFO

Keywords: Numerical algebraic geometry Polynomial system Witness sets Projections Membership test Numerical irreducible decomposition Geometric genus Lüroth quartics

ABSTRACT

Given a witness set for an irreducible variety *V* and a linear map π , we describe membership tests for both the constructible algebraic set $\pi(V)$ and the algebraic set $\overline{\pi(V)}$. We also provide applications and examples of these new tests including computing the codimension one components of $\overline{\pi(V)} \setminus \pi(V)$. Additionally, we also describe computing the geometric genus of a curve section of an irreducible component of the solution set of a polynomial system and a test for deciding whether a plane quartic curve is a Lüroth quartic. © 2013 Elsevier Inc. All rights reserved.

1. Introduction

Given a polynomial system $f : \mathbb{C}^N \to \mathbb{C}^n$, an ℓ -dimensional irreducible component $V \subset f^{-1}(0)$, and a linear map $\pi : \mathbb{C}^N \to \mathbb{C}^K$, a "witness set" for $\overline{\pi(V)}$ was constructed in [7] from a witness set for V, hereafter called a *pseudo-witness set* for $\overline{\pi(V)}$. This approach reduces computations on $\overline{\pi(V)}$ to computations on V without using elimination theory to construct a polynomial system g such that $\overline{\pi(V)}$ is an irreducible component of $g^{-1}(0)$.

The main results of this article, presented in Section 3, are algorithms for performing a numerical membership test for both $\pi(V)$ and $\overline{\pi(V)}$.

Chevalley's theorem [4] states that the image of a constructible set, e.g., $\pi(V)$, is a constructible set.³ Effective symbolic methods for performing computations with constructible sets are discussed in [5,19].

In Section 4, we use these membership tests to compute a numerical decomposition of the irreducible components of $\overline{\overline{\pi(V)} \setminus \pi(V)}$ of codimension one in $\overline{\pi(V)}$ and use this to develop an approach for computing the geometric genus of a generic curve section of $\overline{\pi(V)}$.

The necessary background material is presented in Section 2 which also codifies the properties of our substitute for witness sets into the notion of a pseudo-witness set.

In Section 5, we present examples using our new membership tests.

* Corresponding author.

0096-3003/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2012.12.060

E-mail addresses: hauenstein@ncsu.edu (J.D. Hauenstein), sommese@nd.edu (A.J. Sommese).

URLs: http://www.math.ncsu.edu/~jdhauens (J.D. Hauenstein), http://www.nd.edu/~sommese (A.J. Sommese).

¹ This author was supported by North Carolina State University, Institute Mittag-Leffler (Djursholm, Sweden), and NSF Grant DMS-1262428.

² This author was supported by the Duncan Chair of the University of Notre Dame, Institute Mittag-Leffler (Djursholm, Sweden), and NSF Grant DMS-0712910.

³ A constructible subset of an algebraic set X is any set in the Boolean algebra of subsets of X obtained by starting with algebraic subsets of X and closing up under the operations of finite unions and complementation.

2. Background material

We collect some background material in this section. Throughout, we assume $f : \mathbb{C}^N \to \mathbb{C}^n$ is a polynomial system and define $\mathcal{V}(f)$ to be the set of points in \mathbb{C}^N which f maps to 0. The algebraic set $\mathcal{V}(f)$ is reduced and, in particular, all of the irreducible components of $\mathcal{V}(f)$ have multiplicity one. We let $f^{-1}(0)$ denote $\mathcal{V}(f)$ with its underlying scheme structure, which includes the multiplicity information of the components of $\mathcal{V}(f)$ with regard to f.

2.1. Witness sets

Suppose that $V \subset f^{-1}(0)$ is an ℓ -dimensional irreducible algebraic set of degree d. A witness set for V is the triple $\{f, \mathcal{L}, W\}$ where \mathcal{L} consists of ℓ general linear polynomials on \mathbb{C}^N and $W = V \cap \mathcal{V}(\mathcal{L})$. The witness point set W consists of d points. A finite set W with $W \subset W \subset V$ is called a witness point superset for V.

The multiplicity of V with respect to f is the multiplicity of any $w \in W$ as a root of $\begin{bmatrix} f \\ \mathcal{L} \end{bmatrix}$. The component V is said to be generically reduced with respect to f if the multiplicity of V with respect to f is 1. Otherwise, V is said to be generically non-reduced, which we consider in the following section. See Chap. 13 [23] for more details regarding witness sets.

2.2. Deflation

If *V* is generically nonreduced with respect to *f*, then the deflation approach of [10] produces a polynomial system $F : \mathbb{C}^N \to \mathbb{C}^m$, with $m \ge n$, such that $F^{-1}(0)$ has an irreducible and generically reduced component \widehat{V} which, as a set, is equal to *V*. By renaming as necessary, we will assume *without loss of generality* that *V* is generically reduced with respect to *f*.

It should be noted that more traditional versions of deflation (see also [8,11,12] and Section 13.3.2 and 15.2.2 [23]) change the dimension of the ambient space and may replace V with an algebraic set V' that maps generically one-to-one onto a dense subset of V.

2.3. Randomization

Let $f : \mathbb{C}^N \to \mathbb{C}^n$ be a polynomial system and $1 \leq k \leq n$. For $A \in \mathbb{C}^{k \times (n-k)}$, let

$$\mathcal{R}(f;k) = [I_k A] \cdot f,$$

where I_k is the $k \times k$ identity matrix. It is a consequence of Bertini's theorem, e.g. [22] or Section 13.5 [23], that any irreducible codimension k component of $\mathcal{V}(f)$ is an irreducible component of $\mathcal{V}(\mathcal{R}(f;k))$ for a nonempty Zariski open (and hence dense) set of matrices $A \in \mathbb{C}^{k \times (n-k)}$. Thus, we will assume *without loss of generality* that $f : \mathbb{C}^N \to \mathbb{C}^k$ is a polynomial system where $V \subset f^{-1}(0)$ is a codimension k irreducible component.

2.4. Pseudo-witness sets

Let $f : \mathbb{C}^N \to \mathbb{C}^n$ be a polynomial system and $\{f, \mathcal{L}, W\}$ be a witness set for an irreducible and generically reduced component $V \subset f^{-1}(0)$ of dimension ℓ . Suppose that $\pi : \mathbb{C}^N \to \mathbb{C}^K$ is a linear map and $B \in \mathbb{C}^{K \times N}$ such that $\pi(x) = Bx$.

Even though the set $\pi(V)$ might not be an algebraic set, it is very close to an algebraic set. More specifically, $\pi(V)$ is a *constructible algebraic set* which means that it is a member of the Boolean algebra of sets constructed from algebraic sets by the operations of finite unions, finite intersections, and complementation. A typical example is the projection onto (x, y) of $\mathcal{V}(x - yz)$: the image is $(\mathbb{C}^2 \setminus \mathcal{V}(y)) \cup \{(0, 0)\}$.

The closure of a constructible algebraic set *C* in the complex topology \overline{C} is the same as the closure of *C* in the Zariski topology. The same statement holds for the interior C° of *C* with $\overline{C^{\circ}} = \overline{C}$. In particular, since the dimensions of \overline{C} and C° are equal, the dimension of *C* is well-defined. Finally, if \overline{C} is pure *k*-dimensional, then $\overline{C} \cap L = C^{\circ} \cap L$ for a general affine linear space *L* of codimension *k*. Additional details for constructible algebraic sets is provided in Appendix A [23].

Let $\ell' = \dim \overline{\pi(V)}$. For $i = 1, ..., \ell'$, let $b_i \in \mathbb{C}^N$ be general elements in the row span of *B* and, for $i = \ell' + 1, ..., \ell$, let $b_i \in \mathbb{C}^N$ be general elements in \mathbb{C}^N . We call the quadruple $\{f, \pi, \mathcal{L}', W'\}$ [7], where

$$\mathcal{L}'(x) = \begin{bmatrix} b_1 \cdot x - 1 \\ \vdots \\ b_\ell \cdot x - 1 \end{bmatrix} \text{ and } W' = V \cap \mathcal{V}(\mathcal{L}'),$$

a pseudo-witness set for $\pi(V)$ with deg $\overline{\pi(V)} = |\pi(W)|$.

A pseudo-witness set may be efficiently used to fulfill the same tasks for which a witness set for $\overline{\pi(V)}$ would be used if we had a set of polynomials on \mathbb{C}^{K} whose solution set contained $\overline{\pi(V)}$ as an irreducible component. One example is using pseudo-witness sets in place of witness sets to work with the numerical irreducible decomposition [20] of the closure of the image of an algebraic map, e.g. Section 2.1.3 [1].

Download English Version:

https://daneshyari.com/en/article/4629007

Download Persian Version:

https://daneshyari.com/article/4629007

Daneshyari.com