Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Coefficient estimates for the inverses of a certain general class of spirallike functions

^a College of Mathematics and Information Science, liangxi Normal University, Nanchang 330027, People's Republic of China ^b Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada

ARTICLE INFO

Keywords: Analytic functions Univalent functions Starlike functions Spirallike functions Inverse functions Coefficient estimates Parseval's theorem Coefficient bounds

ABSTRACT

In the present paper, the authors derive several sharp coefficient estimates for the function class $(\hat{S}_{\alpha}^{\beta})^{-1}$ consisting of the inverses of functions in a certain class \hat{S}_{α}^{β} of spirallike functions in the open unit disk U, which was introduced by Libera. They also obtain a number of sharp coefficient bounds of functions in the more general classes Σ_{α}^{β} and $(\Sigma_{\alpha}^{\beta})^{-1}$, each of which is introduced here. Some of the results derived in this paper would generalize those in a recent work of Kapoor and Mishra.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and definitions

Let A denote the class of functions f(z) of the form:

$$f(z)=z+\sum_{n=2}^{\infty}a_nz^n,$$

that is, normalized by

$$f(0) = f'(0) - 1 = 0$$

which are analytic in the open unit disk

 $\mathbb{U} = \{ z : z \in \mathbb{C} \quad \text{and} \quad |z| < 1 \}.$

We denote by S the subclass of functions in A which are univalent in U. In our present investigation, the class of functions g(z) of the form:

$$g(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \frac{b_3}{z^3} + \cdots$$

which are analytic and univalent in

$$\Delta = \{ z : z \in \mathbb{C} \quad \text{and} \quad |z| > 1 \},\$$

will be denoted by Σ .

(1)

^{*} Corresponding author.

E-mail addresses: xuqh@mail.ustc.edu.cn (Q.-H. Xu), lcb@163.com (C.-B. Lv), harimsri@math.uvic.ca (H.M. Srivastava).

^{0096-3003/\$ -} see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2012.12.055

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathbb{U}; \ \mathbf{0} \le \alpha < 1).$$
(3)

We then say that the function f(z) is starlike of order α in \mathbb{U} . We denote by $S^*(\alpha)$ the class of starlike functions of order α in \mathbb{U} . It is known that (see, for example, [4]; see also [25])

$$\mathcal{S}^*(\alpha) \subseteq \mathcal{S}^*(0) \equiv \mathcal{S}^* \subset \mathcal{S} \quad (0 \leqq \alpha < 1).$$

The class of starlike functions of order α ($0 \leq \alpha < 1$) in Δ is denoted by $\Sigma^*(\alpha)$, that is, a function $g \in \Sigma^*(\alpha)$ if and only if $g \in \Sigma$ satisfies the following inequality:

$$\Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha \quad (z \in \Delta; \ 0 \leqq \alpha < 1).$$

Spaček [23] extended the class of S^* by introducing the class of spirallike functions of type β in \mathbb{U} and gave the following analytical characterization of spirallikeness functions of type β in \mathbb{U} .

Theorem A (see Spaček [23]). Let $f \in A$ and suppose that the parameter β is constrained by $-\frac{\pi}{2} < \beta < \frac{\pi}{2}$. Then f(z) is a spirallike function of type β in \mathbb{U} if and only if

$$\Re\left(e^{i\beta}\frac{zf'(z)}{f(z)}\right) > 0 \quad \left(z \in \mathbb{U}; \ -\frac{\pi}{2} < \beta < \frac{\pi}{2}\right).$$

$$\tag{4}$$

We denote the class of spirallike functions of type β in \mathbb{U} by \hat{S}_{β} .

Libera [15] extended the classes $S^*(\alpha)$ and \hat{S}_{β} by introducing the analytic function class \hat{S}_{α}^{β} in \mathbb{U} as follows.

Definition 2 (see Libera [15]). Let $f \in A$. Suppose also that the parameters α and β are constrained by

$$0 \leq \alpha < 1$$
 and $-\frac{\pi}{2} < \beta < \frac{\pi}{2}$

We then say that $f \in \hat{\mathcal{S}}^{\scriptscriptstyle{eta}}_{lpha}$ if and only if

$$\Re\left(e^{i\beta}\frac{zf'(z)}{f(z)}\right) > \alpha\cos\beta \quad \left(z \in \mathbb{U}; \ 0 \le \alpha < 1; \ -\frac{\pi}{2} < \beta < \frac{\pi}{2}\right).$$
(5)

Obviously, we have

$$\hat{\mathcal{S}}^0_{\alpha} = \mathcal{S}^*(\alpha) \text{ and } \hat{\mathcal{S}}^{\beta}_0 = \hat{\mathcal{S}}_{\beta}.$$

Definition 3. Let $g \in \Sigma$. Suppose also that the parameters α and β are constrained by

$$0 \leq \alpha < 1$$
 and $-\frac{\pi}{2} < \beta < \frac{\pi}{2}$

We then say that $g \in \Sigma^{\beta}_{\alpha}$ if and only if

$$\Re\left(e^{i\beta}\frac{zg'(z)}{g(z)}\right) > \alpha\cos\beta \quad \left(z \in \Delta; \ 0 \leq \alpha < 1; \ -\frac{\pi}{2} < \beta < \frac{\pi}{2}\right). \tag{6}$$

We also have

$$\Sigma^*(\alpha) := \Sigma^0_{\alpha} \quad (0 \leq \alpha < 1).$$

Let S^{-1} be the class of the inverse functions f^{-1} of functions $f \in S$ with the following Taylor–Maclaurin series expansion:

$$f^{-1}(\omega) = \omega + \sum_{n=2}^{\infty} A_n \omega^n, \tag{7}$$

in some disk $|\omega| < r_0(f)$ in the complex ω -plane. Suppose also that Σ^{-1} is the class of the inverse functions g^{-1} of the functions $g \in \Sigma$ with the following series expansion:

$$g^{-1}(\omega) = \omega + B_0 + \frac{B_1}{\omega} + \frac{B_2}{\omega^2} + \cdots,$$
 (8)

in some neighborhood of the point at infinity in the complex ω -plane. The function classes

$$\left(\mathcal{S}^*(\alpha)\right)^{-1}, \quad \left(\Sigma^*(\alpha)\right)^{-1}, \quad \left(\hat{\mathcal{S}}^{\beta}_{\alpha}\right)^{-1} \text{ and } \left(\Sigma^{\beta}_{\alpha}\right)^{-1},$$

are defined analogously.

Download English Version:

https://daneshyari.com/en/article/4629022

Download Persian Version:

https://daneshyari.com/article/4629022

Daneshyari.com