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a b s t r a c t

In this study, the numerical solution of Fredholm integro–differential equation is discussed 
in a reproducing kernel Hilbert space. A reproducing kernel Hilbert space is constructed, in
which the initial condition of the problem is satisfied. The exact solution u xð Þ is repre- 
sented in the form of series in the space W2

2½a; b�. In the mean time, the n-term approxima te
solution unðxÞ is obtained and is proved to converge to the exact solution uðxÞ. Furthermore,
we present an iterative method for obtaining the solution in the space W2

2½a;b�. Some 
examples are displayed to demonstrate the validity and applicability of the proposed 
method. The numerical result indicates that the proposed method is straightforward to
implement, efficient, and accurate for solving linear and nonlinear Fredholm integro–dif-
ferential equations.

� 2013 Elsevier Inc. All rights reserved.

1. Introductio n

Integro–differential equation (IDE) has a great deal of application in different branches of sciences and engineering. It
arises naturally in a variety of models from biologica l science, applied mathemati cs, physics, and other discipline s, such 
as theory of elasticity , biomechanics, electromagnet ic, electrodynamics , fluid dynamics, heat and mass transfer, oscillating 
magnetic field, etc. [1–4]. This class of equations is sometimes too complicated to be solved exactly because, generally,
the solution cannot be exhibited in a closed form even when it exists. Therefore, finding either the analytical approximat ion 
or numerical solution of such equations are of great interest.

In this paper, we are concerned with providing the numerical solution based on the use of reproducing kernel Hilbert 
space (RKHS) method for Fredholm IDEs of the general form 

d
dx

uðxÞ ¼ Fðx;uðxÞÞ þ TuðxÞ; a 6 x; t 6 b; ð1Þ

where

TuðxÞ ¼
Z b

a
Kðx; tÞGðuðtÞÞdt;

subject to the initial condition 

uðaÞ ¼ a; ð2Þ
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where a; b;a 2 R;u 2W2
2½a; b� is an unknown function to be determined, Kðx; tÞ is continuo us function on

½a; b� � ½a; b�; Fðx; yÞ;GðzÞ are continuous terms in W1
2½a; b� as y ¼ yðxÞ; z ¼ zðxÞ 2W2

2½a; b�; a 6 x 6 b;�1 < y; z <1 and are 

depending on the problem discussed, and W1
2½a; b�;W

2
2½a; b� are two reproducing kernel spaces.

The numerical solvability of Fredholm IDEs and other related equations has been pursued by several authors. To mention 

a few, in [5] the authors have discussed the Cattani’s method for solving Fredholm IDE u0ðxÞ ¼ uðxÞ þ f ðxÞ þ
R b

a Kðx; tÞuðtÞdt. In

[6] also, the authors have provided the Tau method to further investigatio n to IDE u0ðxÞ ¼ f ðxÞ þ
R b

a Kðx; tÞGðuðtÞÞdt. Further- 
more, the homotopy analysis, differential transformat ion, and Sinc functions methods are carried out in [7–9] for the Fred- 

holm IDE u0ðxÞ ¼ uðxÞgðxÞ þ f ðxÞ þ
R b

a Kðx; tÞuðtÞdt. The homotopy perturbation method has been applied to solve Fredholm 

equation u0ðxÞ ¼ f ðxÞ þ
R b

a Kðx; tÞGðuðtÞ;u0ðtÞÞdt as described in [10]. Recently, the sequential approach method for solving 

equation u0ðxÞ ¼ f ðxÞ þ
R b

a Kðx; tÞGðuðtÞÞdt is proposed in [11]. However, none of previous studies propose a methodical 
way to solve these equation s. Moreover, previous studies require more effort to achieve the results, they are not accurate 
and usually they are develope d for special types of Eqs. (1) and (2). On the other hand, the proposed method has an advan- 
tage that it is possible to pick any point in the interval of integrati on and as well the approximat e solution and its derivative 
will be applicable.

The theory of reproducing kernel has recently emerged as a powerful framework in numerical analysis, differential and 
integral equation s, and probabili ty and statistics [12–14]. On the other aspects as well, a RKHS is a useful framewor k for con- 
structing approximate solutions for linear and nonlinear equations. This method has been impleme nted in several differen- 
tial, integral, integro–differential, operator, and system of equations, such as singular boundary value problems [15–17],
system of boundary value problems [18], partial differential equations [19,20], Volterra–Fredholm integral equations [21],
singular integral equations [22], Fredholm –Volterra IDEs [23,24], operator equation s [25], infinite system of equations 
[26,27], and others.

This paper is organized in six sections including the introduction . In Section 2, two reproducing kernel spaces are pre- 
sented in order to construct a reproducing kernel function in the space W2

2½a; b�. In Section 3, the analytical solution for 
Eqs. (1) and (2) in the space W2

2½a; b� and some essential results are introduced. Also, an iterative method to solve Eqs. (1)
and (2) numerically in the space W2

2½a; b� is described . In Section 4, the n-term approximat e solution unðxÞ is proved to con- 
verge to the exact solution uðxÞ in the space W2

2½a; b�. Numerical experime nts are presented in Section 5. Finally, in Section 6
some concluding remarks are presente d.

2. Construction of reproducing kernel function 

In this section, we construct a reproducing kernel function in order to solve Eqs. (1) and (2) using RKHS method in the 
space W2

2½a; b�. First of all, an abstract set is supposed to have elements, each of which has no structure , and is itself supposed 
to have no internal structure, except that the elements can be distinguishe d as equal or unequal, and to have no external 
structure except for the number of elements.

Definition 1 [15]. Let E be a nonempty abstract set and C be the set of complex numbers. A function K : E� E ! C is a
reproducing kernel of the Hilbert space H if

1. Kð�; tÞ 2 H for all t 2 E,
2. uð�Þ;Kð�; tÞh i ¼ uðtÞ for all t 2 E and all u 2 H.

The name reproducing kernel is inspired by the reproducing property (2) above, which means that the value of the func- 
tion u at the point t is reproducing by the inner product of u with Kð�; tÞ. A Hilbert space which possesse s a reproduci ng
kernel is called a RKHS [15].

Next, we first construct the space W2
2½a; b� in which every function satisfies the initial condition (2) and then formulate the 

reproducing kernel function KxðyÞ in the space W2
2½a; b�. Here, L2½a; b� ¼ fuj

R b
a u2ðxÞdx <1g.

Definition 2 [20]. W2
2½a; b� ¼ fu : u;u0 is absolutely continuous on ½a; b�;u;u0;u00 2 L2½a; b�, and uðaÞ ¼ 0g. The inner product 

and the norm in W2
2½a; b� are defined respectively by

hu;viW2
2
¼ uðaÞvðaÞ þ u0ðaÞv 0ðaÞ þ

Z b

a
u00ðyÞv 00ðyÞdy ð3Þ

and uk kW2
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu;uiW2

2

q
, where u;v 2W2

2½a; b�.
It easy to see that hu;viW2

2
satisfies all the requiremen ts for the inner product. First, hu;uiW2

2
P 0. Second,

hu;viW2
2
¼ hv ;uiW2

2
. Third, hcu;viW2

2
¼ chu;viW2

2
. Fourth, huþw;viW2

2
¼ hu;viW2

2
þ hw;viW2

2
, where u;v ;w 2W2

2½a; b�. It there- 

fore remains only to prove that hu;uiW2
2
¼ 0 if and only if u ¼ 0. In fact, it is obvious that when u ¼ 0 then hu;uiW2

2
¼ 0.

On the other hand, if hu;uiW2
2
¼ 0, then by Eq. (3), we have hu;uiW2

2
¼ ðuðaÞÞ2 þ ðu0ðaÞÞ2 þ

R b
a ðu00ðyÞÞ

2dy ¼ 0, therefore,

uðaÞ ¼ u0ðaÞ ¼ 0 and u00ðyÞ ¼ 0. Then, we can obtain uðyÞ ¼ 0.
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