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a b s t r a c t

A new meshless approach is investigated by using Taylor series expansion and technique of
differential transform method, which is called Meshless Implementation of Taylor 
Series Method (MITSM). In particular, Strong form Meshless Implementat ion of Taylor 
Series Method (SMITSM) is studied in this paper. Then, the basis functions are used to solv e
a 1D second-order ordinary differential equation and 2D Laplace equation by using the 
SMITSM. Comparisons are made with the analytical solutions and results of Symmetric 
Smoothed Particle Hydrodynamics (SSPH) method. We also compared the effectiveness 
of the SMITSM and SSPH method by considering various particle distributions, nonhomo- 
geneous terms and number of terms in the basis functions. It is observed that the MITSM 
has the conventional convergence properties and, at the expense of CPU time, yields 
smaller L2 error norms than the SSPH method, especially in the existence of nonsmooth 
nonhomogeneous problems.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction 

Meshless smoothed particle hydrodyn amics (SPH) method, proposed by Lucy [1] to study three-dimensio nal (3D) astro- 
physics problems, has been successfully applied to analyze transient fluid and solid mechanics problems. However , it has 
two shortcomings such as inaccuracy at particles on the boundary and tensile instability. Many techniques have been devel- 
oped to alleviate these two deficiencies among which are corrected smoothed particle method (CSPM) [2,3], reproducing 
kernel particle method (RKPM) [4–6] and modified smoothed particle hydrodynam ics (MSPH) method [7–10]. The MSPH 
method has been successfully applied to study wave propagation in functionally graded materials [9], can capture the stress 
field near a crack-tip , and simulates the propagation of multiple cracks in a linear elastic body [10]. The SSPH method has 
been applied to 2D homogen eous elastic problem successfully [11]. On the other hand, the SSPH method [11,12] is more suit- 
able for homogeneous boundary value problems, cannot be easily applicabl e to nonlinear problems, requires at least fourth 
order terms in basis functions for the buckling problems which increases the CPU time.

Motivated by the fact that the SSPH method may not yield accurate results for solving nonhomogene ous problems due to
its underlyin g formulation (e.g., see [13]), an alternative approach is investigated especially for nonhomegeno us problems.
To this end, based on the Taylor series expansion (TSE) and employing the technique of differential transform method (DTM),
a new meshless approach called Meshless Implementa tion of Taylor Series Method (MITSM) is presented in this paper.
Although both of the SSPH method and MITSM depend on TSEs, the main differenc e between these two approaches is as fol- 
lows: the SSPH method calculates the value of the solution at a node by using the values of the solution at the other nodes 
and then substitute it into the governing differential equation; thus, nonhomogene ous terms in the governing differential 
equation are also evaluated pointwise at the nodes. This approach results in approximat ion errors especially in the existence 
of nonsmooth nonhomogene ous terms. On the other hand, the proposed MITSM approach substitute the TSEs of the solution 
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and nonhomogene ous term into the governing differential equation and then utilize exact recursive relations between the 
coefficients of the expansions of the solution and nonhomo geneous term; it yields improvem ent in accuracy that is verified
by solving numerica l examples in Section 4. The MITSM can be applied to arbitrary boundary geometries, nonlinear prob- 
lems, and strong and weak formulation s. In particular, Strong form Meshless Implementatio n of Taylor Series Method 
(SMITSM) is investigated in this paper, whose results are compared with the analytica l solutions and solutions of the SSPH 
method. It is shown that the SMITSM has the conventional convergence propertie s and yields smaller L2 error norms in
numerical examples than the SSPH method, especiall y in the existence of nonsmooth nonhomogene ous terms.

2. Differential transform method (DTM)

In this study, the DTM techniqu e are employed to develop the MITSM. It is noteworthy that when the DTM is applied to
ordinary differential equations, it exactly coincides with the traditional Taylor series method [14] where applications of TSEs 
and DTM are presented in detail. The 3D differential transform of a function qðx; y; zÞ is defined as follows 

Qðk;h;mÞ ¼ 1
k!h!m!

@kþhþmqðx; y; zÞ
@xkyhzm

" #
ð0;0;0Þ

ð2:1Þ

where qðx; y; zÞ is the original function and Qðk;h;mÞ is the transformed function. The inverse differential transform of
Qðk;h;mÞ is given by

qðx; y; zÞ ¼
X1
k¼0

X1
h¼0

X1
m¼0

Qðk;h;mÞxkyhzm ð2:2Þ

Some of the fundamental theorems on differential transform can be found in [15–20].

3. Strong form Meshless Implement ation of Taylor Series Method (SMITSM)

Formulations of the SMITSM for 2D problems are presented in this section. For a function Tðx; yÞ which has continuous 
derivatives up to the ðnþ 1Þth order, the value of Tðx; yÞ at a point n ¼ ðx; yÞ located in the neighborho od of a point 
xi ¼ ðxi; yiÞ can be written through the DTM technique as follows 

Tiðx; yÞ ¼
X1
k¼0

X1
h¼0

Uiðk;hÞðx� xiÞkðy� yiÞ
h ð3:1Þ

By introducing the matrices Pðx; nÞ and U i, Eq. (3.1) can be cast into the following form 

Tiðx; yÞ ¼ Pðx; nÞU i ð3:2Þ

where

Pðx; nÞ ¼ ðx� xiÞ0ðy� yiÞ
0
; ðx� xiÞ1ðy� yiÞ

0
; ðx� xiÞ0ðy� yiÞ

1
; . . . ; ðx� xiÞkðy� yiÞ

h
h i

; ð3:3Þ

U i ¼ ½Uið0;0Þ;Uið1;0Þ;Uið0;1Þ;Uið2; 0Þ;Uið0;2Þ;Uið1;1Þ; . . . ;Uiðk;hÞ�T ð3:4Þ

Elements of U i are unknown variables that are defined by

Uiðk;hÞ ¼
1

k!h!

@kþhTiðx; yÞ
@xk@yh

" #
ðxi ;yiÞ

ð3:5Þ

If both sides of Eq. (3.2) are multiplied by the kernel function Wðn; xÞ, then we obtain 

Wðn; xÞTiðx; yÞ ¼Wðn; xÞPðx; nÞU i ð3:6Þ

In the compact support of Wðn; xÞ associated with the point xi ¼ ðxi; yiÞ, let Ng denote the number of particles, e.g., see 
Fig. 1.

If Eq. (3.6) is rewritten for all particles in the compact support domain shown in Fig. 1, by summing each side of these 
equations over these particles we get 

XNg

g¼1

Wðng ; xiÞTiðngÞ ¼
XNg

g¼1

Wðng ; xiÞPðng ; xiÞU i ð3:7Þ

In order to generate equations as many as the number of unknowns in U i, Eq. (3.7) is rewritten by replacing Wðn; xÞ with
the following derivatives 
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