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a b s t r a c t

In this paper we develop a posteriori error estimates for the steady Navier–Stokes equa- 
tions based on the lowest equal-order mixed finite element pair. Residual type a posteriori 
error estimates are derived by means of general framework established by Verfürth for the 
nonlinear equations. Furthermore, a simple error estimator in L2 norm is also presented by
using the duality argument. Numerical experiments using adaptive computations are pre- 
sented to demonstrate the effectiveness of these error estimates for three examples. The 
first example is a singular problem with known solution, the second example is a physical 
model of lid driven cavity and the last one is a backward facing step problem.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction 

In the numerical approximat ion of partial different ial equations, one usually faces the problem of increasing the accuracy 
of a solution without adding unnecessar y degrees of freedom, therefore, we need to update the mesh to ensure that the mesh 
becomes fine enough in the critical regions while remaining reasonable coarse in the rest of the domain. In recent years, a lot 
of work have been done about the adaptive mesh refinement techniques based on a posteriori error estimato rs for finite ele- 
ment discretiza tions of 2nd order partial differential equations, see [1,4,7,8,11] and the reference therein.

Deriving an efficient posterior i indicators for the Stokes equations have attracted much attentions. The works of Verfürth
[25] provided a basic foundation for the mathemati cal theory of practical methods, and this problem has also been advanced 
by Ainsworth and Oden [2], He et al. [18], Kondraty uk and Stevenson [21] and others. For the nonlinear problems, Verfürth
has established a general framework in [26] and proved that they were global upper bound and local lower bound for the 
finite element errors. These indicators can be changed to be applied to other situations, see [3,15,23]. For the Navier–Stokes
equations, the importance of ensuring the compatibilit y of the approximation s for velocity and pressure by satisfying the so- 
called inf–sup condition is widely understo od [17,24]. Although some stable mixed finite element pairs have been studied 
over the years, the low order mixed finite element pairs not satisfying the inf–sup condition may work well. For example,
those pairs have simple constructions and high efficiency of computation. In order to use these finite element pairs, various 
stabilized techniques have been proposed and studied. For instance, the pressure gradient method [5], the polynomi al
pressure projection method [6,12,28], the Douglas–Wang method [13], the method of local Gauss integrations [22] and so
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on. Based on the attractive features of the adaptive method and stabilized method, many researchers have combined them to
treat the linear and nonlinear problems, see references [14,20,29] and therein.

In this paper, under the framework of Verfürth [26], we describe two residual types of error estimators and derive a pos- 
teriori error estimates for the steady Navier–Stokes equations based on the P1-P1 element. The reasons of choosing P1-P1 ele-
ment lie in: (1) The P1-P1 pair is computationall y convenient in a parallel processing and multigrid context because this pair 
holds the identical distribution for both the velocity and pressure; (2) The P1-P1 pair is of practical importance in scientific
computation with the lowest computational cost. We obtain the global upper and local lower bounds for the velocity and 
pressure in energy norm. Furthermore, with the help of the duality argument, a global upper bound for the velocity in L2-
norm is also derived.

This paper is organized as follows. Section 2 is devoted to present some notations and preliminary results for the steady 
Navier–Stokes equations. In Section 3, an abstract framework from the literature [26] for constructing a posteriori error esti- 
mates for nonlinear equations is presente d. After describin g some finite element tools necessar y for constructing the error 
estimates, the stabilized finite element formulation for the Navier–Stokes equations is then cast in this framework. A pos- 
teriori error estimates for numerica l solution in energy norm and L2-norm are constructed in Section 4. In Section 5, some 
numerical results are given to illustrate the efficiency of the established error estimato rs. Finally, some conclusions are given 
in Section 6.

2. Preliminaries 

Let X be a bounded domain in R2 assumed to have a Lipschitz continuous boundary @X. We consider the following incom- 
pressible flow problem:

�mDuþ ðu � rÞuþrp ¼ f in X;

div u ¼ 0 in X;

u ¼ 0 on @X;

8><>: ð2:1Þ

where u ¼ ðu1ðxÞ;u2ðxÞÞT represents the velocity, p ¼ pðxÞ the pressure, f ¼ f ðxÞ the prescribed body force and m > 0 the 
viscosity.

In order to simple the notations, we set 

X ¼ H1
0ðXÞ

2
; Y ¼ L2ðXÞ2; M ¼ L2

0ðXÞ ¼ q 2 L2ðXÞ :

Z
X

qdx ¼ 0
� �

:

Here, Wl;qðXÞ be a standard Sobolev spaces with norm and seminorm k � kl;q;X and j � jl;q;X, respectivel y. The spaces 
L2ðXÞm ðm ¼ 1;2Þ are endowed with the standard L2-scalar product ð�; �Þ and norm k � k0;X. The spaces H1

0ðXÞ and X are
equipped with the scalar product ðru;rvÞ and norm kuk2

1;X ¼ ðru;ruÞ;8 u;v 2 H1
0ðXÞ or X. Due to the norms equivalence 

between kuk1;X and juj1;X on H1
0ðXÞ

iði ¼ 1;2Þ, we use the same notation for them.
We define the generalized bilinear form on ðX;MÞ � ðX;MÞ by

Bððu; pÞ; ðv ; qÞÞ ¼ aðu; vÞ � dðv ;pÞ þ dðu; qÞ ¼ mðru;rvÞ � ðp;divvÞ þ ðq;divuÞ

and the trilinear form on X � X � X

bðu;v ;wÞ ¼ ððu � rÞv ;wÞ þ 1
2
ððdivuÞv;wÞ ¼ 1

2
ððu � rÞv;wÞ � 1

2
ððu � rÞw;vÞ; 8 u;v ;w 2 X:

If @X is of C2 or X is a two-dimensional convex polygon, the following inequalit ies which are borrowed from [10] hold:

kvk0 6 c0jvj1; kvk0;4 6 21=4kvk1=2
0;2 krvk1=2

0;2 ; 8 v 2 X; ð2:2Þ

where c0 is a positive constant only depending on X.
It is easy to verify that Bðð�; �Þ; ð�; �ÞÞ and bð�; �; �Þ satisfy the following important properties (see [17,19,24]):

Bððu; pÞ; ðu;pÞÞ ¼ mjuj21;
jBððu; pÞ; ðv ; qÞÞj 6 Cðjuj1 þ kpk0Þðjvj1 þ kqk0Þ;
b0ðjuj1 þ kpk0Þ 6 supðv;qÞ2ðX;MÞ

jBððu;pÞ;ðv;qÞÞj
jvj1þkqk0

8>><>>: ð2:3Þ

for all ðu; pÞ; ðv ; qÞ 2 ðX;MÞ, and the constant b0 > 0,

bðu;v ;wÞ ¼ �bðu;w;vÞ; bðu;v; vÞ ¼ 0; ð2:4Þ
jbðu;v ;wÞj 6 Nkruk0krvk0krwk0 ð2:5Þ

for all u;v ;w 2 X, where 

N ¼ sup
u;v ;w2X

jbðu; v;wÞj
kruk0krvk0krwk0

:
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