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Keywords: For a family of non-autonomous differential equations with distributed delays, we give suf-
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for their global exponential stability. The existence and global exponential stability of a
periodic solution is also addressed. A comparison of results shows that these results are
general, news, and add something new to some earlier publications.
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1. Introduction

In the last decades, retarded functional differential equations (FDEs) have attracted the attention of an increasing number
of scientists due to their potential applications in different sciences. Differential equations with delays have served as models
in population dynamics, ecology, epidemiology, disease modeling, and neural networks.

Neural network models possess good potential applications in areas such as content-addressable memory, pattern
recognition, signal and image processing and optimization (see [2,14,17,18], and references therein).

In 1983, Cohen and Grossberg [5] proposed and studied the artificial neural network described by a system of ordinary
differential equations

n
Xi(t) = —kix:(0) [bi(xi(t) = Y _aufi(x(0)) |, i=1,...,n (1.1)
=1
and, in 1984, Hopfield [9] studied the particular situation of (1.1) with k; = 1,
n
Xi(t) = —bixi(t) + > ayfi(x;(t), i=1,...,n. (1.2)
j=1

In 1988, Kosko presented a kind of neural networks, which is called bidirectional associative memory (BAM) neural
network, [12],
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xi(t) = —xi(t) + Zaijf(yj(t)) +1;
- Ci=1,....n (1.3)

Vi) = =y;(t) + > _bif(xi(t)) +J;
=

The finite switching speed of the amplifiers, communication time, and process of moving images led to the use of time-
delays in models (1.1), (1.2), and (1.3), arising the delayed neural network models. In the applications of delayed neural net-
works to some practical problems, stability plays an important role. It is well known that delays can affect the dynamic
behavior of neural networks (see [1,13]). For this reason, stability of delayed neural networks has been investigated exten-
sively. There are many important results on static (equilibrium-type) attractors of neural networks (see [2,3,7,10,14,15], and
the references therein), but it is well known that non-static attractors, such as periodic oscillatory behavior, are also an
important aspect (see [4,11,16,19,20], and the references therein).

In the literature, the usual approach to analyze the stability property is to construct a suitable Lyapunov functional for a con-
crete n-dimensional FDE and then to derive sufficient conditions ensuring stability. However, constructing a Lyapunov func-
tional is not an easy task and, frequently, a new functional is required for each model under consideration. In quite an
unusual way, our techniques (see [6,7,14,15]) do not involve Lyapunov functionals, and our method applies to general systems.

This paper is organized as follows: In Section 2, we briefly present the phase space for FDEs written in abstract form as
X'(t) = f(t,x,), then we define the global exponential stability of a FDE, and finally we establish a general condition for the
boundedness of solutions of x'(t) = f(t,x,). In Section 3, we present the results on global exponential stability of a general
class of nonautonomous delay differential equations, which includes most of neural network models. In Section 4, we prove
the existence and global exponential stability of a periodic solution of a periodic general Hopfield neural network type mod-
el. Finally, in Section 5, we illustrate the results with well-known nonautonomous n-dimensional neural network models and
we compare our results with the literature, showing the advantage of our method when applied to several different models,
such as Hopfield or BAM neural network models.

2. Preliminaries

For a,b € R with b > a and n € N, we denote by C([a,b]; R") the vector space of continuous functions ¢ : [a,b] — R",

equipped with the supremum norm || - || relative to the max norm |- | in R", i.e., ||@|| = sup,.,,|(0)| for ¢ € C([a, b]; R"),
where |x| = maxi_;__n|x;| for x=(x1,...,X,) € R". For c € R, we use c to denote the constant function ¢(#) =c in
C([a,b]; R"). A vector d = (dy,...,d,) € R" is said to be positive if d; > 0 for i =1,...,n, and in this case we write d > 0.
In the space C, := C([-7,0]; R"), for T > 0, consider FDEs,
X(t)=f(t,x), t=0, (2.1)

where f:[0,+00) x C;, — R" is a continuous function and, as usual, x; denotes the function in C, defined by
x:(0) = x(t + 0), —7 < 0 < 0. It is well-known that, assuming the Banach space C, as the phase space of (2.1), the standard
existence, uniqueness, and continuous type results are valid (see [8]). We always assume that f is regular enough in order
to have uniqueness of solutions for the initial value problem. The solution of (2.1) with initial condition x;, = ¢, for
to = 0and @ € C,, is denoted by x(t, ty, ¢). For @ > 0 and ¢ € C,, we write x,,(¢), or just x,, if there is no confusion, to denote
the function in C, defined by x,,(®)(0) = x(® + 0,0, ), 0 € [-7,0].

Definition 2.1. The solution x(t, 0, () of (2.1), with ¢ € Cy, is said globally exponentially stable if there are ¢ >0and M > 1
such that

|X(t, 01 (P) *X(LO, @)' < Me_gtH(p - @H: vt = 07 VQ) € Cn'
Definition 2.2. The system (2.1) is said globally exponentially stable if there are ¢ > 0 and M > 1 such that
X(£,0,0,) = x(t,0,0,)| < Me ™| @, — @,|, Yt =0, Yo, ¢, €Cy

In [6], a relevant result on the boundedness of solutions for the general FDE (2.1) was established. For convenience of the
reader, we put the proof here.

Lemma 2.1 [6]. Consider Eq. (2.1) with the continuous functions f = (f1,...fu) satisfying:

(H) for all t > 0 and ¢ € C, such that |@(0)| < |@(0)]| for 6 € [—7,0), then ¢;(0)fi(t, @) < 0 for some i € {1,...,n} such that
l(0)] = [¢;(0)].

Then, all solutions of (2.1) are defined and bounded for t > 0. Moreover, if x(t) = x(t, 0, ), with ¢ € Gy, is a solution of (2.1), then
x(t)] < |||l forall t > 0.
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