FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences

Mikail Et

Department of Mathematics, Firat University, 23119 Elazığ, Turkey

ARTICLE INFO

Keywords:
Difference sequence
Lacunary sequence
Statistical convergence

ABSTRACT

In this paper we introduce and examine some properties of the sequence spaces $C(\Delta_v^m, \theta, (p)), C[\Delta_v^m, \theta, (p)], C_\infty(\Delta_v^m, \theta, (p)), C_\infty[\Delta_v^m, \theta, (p)], N_\theta(\Delta_v^m, (p)), S_\theta(\Delta_v^m)$ and study various properties and inclusion relations of these spaces. We also show that the space $S_\theta(\Delta_v^m)$ may be represented as $N_\theta(\Delta_v^m, (p))$ space.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let w be the set of all sequences of real or complex numbers and ℓ_{∞} , c and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x||_{\infty} = \sup |x_k|$, where $k \in \mathbb{N} = \{1, 2, ...\}$, the set of positive integers. Also by bs, cs, ℓ_1 and ℓ_p ; we denote the spaces of all bounded, convergent, absolutely summable and p-absolutely summable series, respectively.

Let $\theta = (k_r)$ be the sequence of positive integers such that $k_0 = 0, 0 < k_r < k_{r+1}$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. Then θ is called a lacunary sequence. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio k_r/k_{r-1} will be denoted by q_r . Lacunary sequences have been studied in [4,7,13,15,18].

The notion of difference sequence spaces was introduced by Kızmaz [20] and the notion was generalized by Et and Çolak [10]. Later on Et and Esi [11] generalized these sequence spaces to the following sequence spaces. Let $v = (v_k)$ be any fixed sequence of nonzero complex numbers and let m be a non-negative integer. Then,

$$\Delta_v^m(X) = \left\{ x = (x_k) : (\Delta_v^m x_k) \in X \right\}$$

for $X = \ell_{\infty}$, c or c_0 , where $m \in \mathbb{N}$, $\Delta_v^0 x = (v_k x_k)$, $\Delta_v^m x = (\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1})$ and so $\Delta_v^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} v_{k+i} x_{k+i}$. The sequence spaces $\Delta_v^m(X)$ are Banach spaces normed by

$$\|\mathbf{x}\|_{\Delta} = \sum_{i=1}^{m} | \mathbf{v}_i \mathbf{x}_i | + \|\Delta_{\mathbf{v}}^{m} \mathbf{x}_k\|_{\infty}$$

for $X = \ell_{\infty}$, c or c_0 . Recently the difference sequence spaces have been studied in [1–3,5,8,9,19,26,27,29,31–33].

The Cesàro sequence spaces Ces_p and Ces_{∞} have been introduced by Shiue [25]. Jagers [16] has determined the Köthe duals of the sequence space Ces_p $(1 . It can be shown that the inclusion <math>\ell_p \subset Ces_p$ is strict for $1 . Later on the Cesàro sequence spaces <math>X_p$ and X_{∞} of non-absolute type are defined by Ng and Lee [21,22].

Let *X* be a sequence space. Then *X* is called.

- (i) *Solid* (or *normal*), if $(\alpha_k x_k) \in X$ for all sequences (α_k) of scalars with $|\alpha_k| \le 1$ for all $k \in \mathbb{N}$, whenever $(x_k) \in X$,
- (ii) Symmetric, if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where π is a permutation of \mathbb{N} ,

(iii) Sequence algebra if $x \cdot y \in X$, whenever $x, y \in X$.

2. Main results

In this section we prove some results involving the sequence spaces $C(\Delta_n^m, \theta, (p)), C[\Delta_n^m, \theta, (p)], C_{\infty}(\Delta_n^m, \theta, (p)), C_{\infty}[\Delta_n^m, \theta, (p)]$ and $N_{\theta}(\Delta_{n}^{m},(p))$.

Definition 2.1. Let $p = (p_r)$ be a sequence of strictly positive real numbers. We define the following sequence spaces:

$$C(\Delta_{v}^{m}, \theta, (p)) = \left\{ x = (x_{k}) : \sum_{r=1}^{\infty} \left| h_{r}^{-1} \sum_{k \in I_{r}} \Delta_{v}^{m} x_{k} \right|^{p_{r}} < \infty \right\},$$

$$C[\Delta_{v}^{m}, \theta, (p)] = \left\{ x = (x_{k}) : \sum_{r=1}^{\infty} \left(h_{r}^{-1} \sum_{k \in I_{r}} \left| \Delta_{v}^{m} x_{k} \right| \right)^{p_{r}} < \infty \right\},$$

$$C_{\infty}(\Delta_{v}^{m}, \theta, (p)) = \left\{ x = (x_{k}) : \sup_{r} \left| h_{r}^{-1} \sum_{k \in I_{r}} \Delta_{v}^{m} x_{k} \right|^{p_{r}} < \infty \right\},$$

$$C_{\infty}[\Delta_{v}^{m}, \theta, (p)] = \left\{ x = (x_{k}) : \sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left| \Delta_{v}^{m} x_{k} \right|^{p_{r}} < \infty \right\},$$

$$N_{\theta}(\Delta_{v}^{m}, (p)) = \left\{ x = (x_{k}) : \lim_{r} h_{r}^{-1} \sum_{k \in I_{r}} \left| \Delta_{v}^{m} x_{k} - L \right|^{p_{r}} = 0 \right\}.$$

We get the following sequence spaces from the above sequence spaces giving particular values to θ , p, v and m.

- (i) If $p_r = p$ for all $r \in \mathbb{N}$ we write $C(\Delta_v^m, \theta, p), C[\Delta_v^m, \theta, p], C_{\infty}(\Delta_v^m, \theta, p), C_{\infty}[\Delta_v^m, \theta, p]$ and $N_{\theta}(\Delta_v^m, p)$ instead of $C(\Delta_{\nu}^m, \theta, (p)), C[\Delta_{\nu}^m, \theta, (p)], C_{\infty}(\Delta_{\nu}^m, \theta, (p)), C_{\infty}[\Delta_{\nu}^m, \theta, (p)] \text{ and } N_{\theta}(\Delta_{\nu}^m, (p)) \text{ respectively.}$
- (ii) If $p_r = 1$ for all $r \in \mathbb{N}$ we write $C(\Delta_v^m, \theta), C[\Delta_v^m, \theta], C_{\infty}(\Delta_v^m, \theta), C_{\infty}[\Delta_v^m, \theta], C_{\infty}(\Delta_v^m, \theta), C_{\infty}[\Delta_v^m, \theta], C_{\infty}(\Delta_v^m, \theta), C_{\infty}[\Delta_v^m, \theta], C_{\infty}[\Delta_v^m, \theta],$
- (iii) In the case $\theta = (2^r)$ and $p_r = 1$ for all $r \in \mathbb{N}$ we shall write $C(\Delta_p^m), C[\Delta_p^m], C_\infty(\Delta_p^m), C_\infty[\Delta_p^m]$ and $N_\theta(\Delta_p^m)$ instead of $C(\Delta_v^m, \theta, (p)), C[\Delta_v^m, \theta, (p)], C_{\infty}(\Delta_v^m, \theta, (p)), C_{\infty}[\Delta_v^m, \theta, (p)]$ and $N_{\theta}(\Delta_v^m, (p))$ respectively. If $x \in N_{\theta}(\Delta_v^m)$, we say that x is $\Delta_v^m - (D_v^m, D_v^m, \theta, (p))$ respectively. lacunary strongly summable to *L*. If we take m=0 and $\nu=(1,1,1,\ldots)$ then we obtain the sequence space N_{θ} introduced and investigated by Freedman et al. [13]. In the case $\theta = (2^r)$ we write $|\sigma_1|(\Delta_n^m)$ instead of $N_{\theta}(\Delta_n^m)$. If $x \in |\sigma_1| (\Delta_n^m)$, we say that x is Δ_n^m -strongly Cesàro summable to L.

The above sequence spaces contain some unbounded sequences for $m \ge 1$, for example let $x = (k^m)$, then $x \in C_{\infty}[\Delta_{\nu}^{m}, \theta, (p)]$ but $x \notin \ell_{\infty}$.

The proof of the following two results are easy, so we state without proof.

Theorem 2.2. Let the sequence (p_r) be bounded. Then the sequence spaces $C(\Delta_n^w, \theta, (p)), C[\Delta_n^w, \theta, (p)], C_{\infty}(\Delta_n^w, \theta, (p)), C_{\infty}[\Delta_n^w, \theta, (p)]$ and $N_{\theta}(\Delta_{\nu}^{m},(p))$ are linear spaces.

Theorem 2.3. Let m denote an arbitrary positive integer, then the following inclusions are strict.

- $\begin{array}{c} (\mathrm{i}) \ C(\Delta_v^{m-1},\theta,p) \subset C(\Delta_v^m,\theta,p), \\ (\mathrm{ii}) \ C[\Delta_v^{m-1},\theta,p] \subset C[\Delta_v^m,\theta,p], \\ (\mathrm{iii}) \ C[\Delta_v^m,\theta,(p)] \subset C(\Delta_v^m,\theta,(p)), \end{array}$
- (iv) $C(\Delta_n^m, \theta, p) \subset C(\Delta_n^m, \theta, q)(0 ,$

Theorem 2.4. The sequence space $C[\Delta_n^m, \theta, p]$ is a BK-space normed by

$$\|\mathbf{x}\|_{1} = \sum_{i=1}^{m} | \nu_{i} \mathbf{x}_{i} | + \left(\sum_{r=1}^{\infty} \left(h_{r}^{-1} \sum_{k \in I_{r}} | \Delta_{\nu}^{m} \mathbf{x}_{k} | \right)^{p} \right)^{\frac{1}{p}}, \quad (1 \leqslant p < \infty).$$

 $C_{\infty}[\Delta_{v}^{m}, \theta]$ and $N_{\theta}(\Delta_{v}^{m})$ are BK-space normed by

Download English Version:

https://daneshyari.com/en/article/4629083

Download Persian Version:

https://daneshyari.com/article/4629083

<u>Daneshyari.com</u>