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a b s t r a c t

Nonconforming quadrilateral finite element method (FEM) of the two-dimensional 
nonlinear sine–Gordon equation is studied for semi-discrete and Crank–Nicolson fully- 
discrete schemes, respectively. Firstly, we prove a special feature of a new arbitrary 
quadrilateral element (named modified Quasi–Wilson element), i.e., the consistency error 
is of order Oðh2Þ (h denotes the mesh size) in H1-norm, which leads to optimal order error 
estimate and superclose result with order Oðh2Þ for the semi-discrete scheme through a
different approach from the existing literature. Secondly, becau se the consiste ncy error 
estimate of the new modified Quasi–Wilson element can reach a staggering Oðh3Þ order,
two orders higher than that of interpolation error, the optimal order error estimates of
Crank–Nicolson fully-discret e scheme are obtained on arbitrary quadrilateral meshes with 
Ritz projection. Moreover, a superclose result in H1-norm is presented on generalized rect- 
angular meshes by a new technique. Thirdly, the global superconvergenc e results of H1-
norm for both semi-discrete and fully-discrete schemes are derived on rectangular meshes 
with interpolated postprocessi ng technique. Finally, a numerical test is carried out to verify 
the theoretical analysis.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction 

The nonlinear sine–Gordon equation arises in various problems in science and engineering. The study of this model 
mainly on two aspects: some attention has been paid to exact solution by algebraic analysis [1–5] and the others are devoted 
to numerical simulation with variety of numerical methods [6–16], such as finite difference methods, FEMs, pseudo spectral,
domain decomposition methods and so on. It is well known that FEM is an important numerical method and has been widely 
used in evolution equation s [17–20]. There are also some excellent work on FE approximat ion to two-dimensional nonlinear 
sine–Gordon equation [11–14]. However, to our best knowledge, almost all of previous analysis only concentrated on con- 
forming FEs.

As we know, due to the consistency error, whether for linear or nonlinear problems, the use of nonconform ing FEs may be
unable to get the optimal order convergence estimates. So it is critical to select appropriate nonconform ing FEs. Recently, one 
of the authors analyzed a class of low-order nonconform ing elements for sine–Gordon equation , such as EQrot

1 element
[21,22], Q rot

1 element [23], P1-nonconformi ng element [24], the optimal order error estimate order with OðhÞ is obtained 

0096-3003/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2013.03.008

q The research is supported by the NSF of China (Nos. 10971203 and 11271340), Research Fund for the Doctoral Program of Higher Education of China 
(No. 20094101110006), Foundation of He’nan Educational Committee (No. 13B110144).
⇑ Corresponding author.

E-mail address: shi_dy@zzu.edu.cn (D. Shi).

Applied Mathematics and Computation 219 (2013) 9447–9460

Contents lists availabl e at SciVerse ScienceDi rect 

Applied Math ematics and Computati on

journal homepage: www.elsevier .com/ locate/amc

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.amc.2013.03.008&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.03.008
mailto:shi_dy@zzu.edu.cn
http://dx.doi.org/10.1016/j.amc.2013.03.008
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


on rectangular meshes [25]. In this paper, we propose a new arbitrary quadrilater al element (named modified Quasi–Wilson 
element) and further explore its approximat ion propertie s to a class of nonlinear sine–Gordon equations.

On one hand, approaches used in [25] for error estimates are no longer valid to the new modified Quasi–Wilson element 
space Vh since it does not satisfy 

R
l½vh�ds ¼ 0, where ½vh� stands for the jump of vh 2 Vh across the internal edge l. Thus we

need to develop some new techniqu es to deal with this issue. Fortunatel y, with the similar argument to [26] for Quasi–Wil-
son element [27,28], it is shown that the new modified Quasi–Wilson element has a typical feature, i.e., the consisten cy error 
estimate in H1-norm is of order Oðh2Þ, one order higher than its interpolati on error. Then combinin g with the high accuracy 
result of bilinear FE on generalized rectangular meshes [29], we can derive the optimal order error estimate in L2-norm and 
superclose result in H1-norm with order Oðh2Þ for the semi-dis crete scheme, which improves the results of [25] by one order.

On the other hand, we find surprisely that when the exact solution belongs to H4ðXÞ \ H1
0ðXÞ, the consistency error esti- 

mate of the new modified Quasi–Wilson element can reach a staggerin g Oðh3Þ order, two order higher than its interpolation 
error. Then using the high accuracy result of bilinear FE and Ritz projection, and employing a new technique different from 
the above analysis of semi-discre te scheme, we get the optimal error estimates on arbitrary quadrilateral meshes and super- 
close property in H1-norm with order Oðh2 þ ðMtÞ2Þ (Mt is the time step) on generalized rectangular meshes for Crank–Nicol- 
son fully-discret e scheme, respectively. These results are one order higher than that of the usually low order nonconform ing 
FE methods mentioned in [25]. Furthermor e, applying interpolation postprocess ing techniqu e, we present the global super- 
convergence in H1-norm for semi-dis crete and Crank–Nicolson fully-discret e schemes with order Oðh2Þ and Oðh2 þ ðMtÞ2Þ
respectively for the first time. We point out that the results provided herein are also valid to Quasi–Wilson on rectangular 
meshes (see Remark 3). Finally, numerical results are presented to confirm our theoretical analysis.

It is worth notice that some very popular nonconform ing quadrilateral and triangula r elements cannot be applied to sine–
Gordon equation to get the results of this paper directly, such as the quasi-conform ing isoparam etric element [30], Wilson 
element, Carey element [31], Crouzeix–Raviart linear triangular element [32] and so on. In addition, how to use the noncon- 
forming elements of [21–25] to get Oðh2Þ order estimates still remains open.

The remainder of this paper is organized as follows: In next section, we present two important lemmas, then give the 
optimal error estimate and superclose result of semi-dis crete scheme on generalized rectangu lar meshes. In Section 3, the 
optimal error estimates are obtained for Crank–Nicolson fully-discret e scheme on arbitrary quadrilateral meshes. Moreove r,
the superclose property in H1-norm with order Oðh2 þ ðMtÞ2Þ is derived on generaliz ed rectangular meshes. Finally, we get 
the global superconvergence in H1-norm for semi-discrete and Crank–Nicolson fully-discrete schemes on rectangular 
meshes. At the same time, we also carry out a numerica l experime nt to verify the performanc e of the new element.

We will use standard notations for the Sobolev spaces HmðXÞ with norm k � km and semi-nor m j � jm, and HmðKÞ with norm 
k � km;K and semi-norm j � jm;K , where m P 0 is an integer. Let k � k0 and k � k0;K be the L2ðXÞ-norm and L2ðKÞ-norm, respectively.
Besides, let PkðKÞ be the space consisting of piecewise polynomials of degree k, and Q kðKÞ be space of polynomials whose 
degrees for x; y are equal to k on element K, where k P 0 is an integer. Throughout the paper, C denotes a positive constant 
independen t of the mesh parameter h and may be different at each appearance.

2. Semi-discrete scheme 

Consider the following sine–Gordon equation [1]

utt þ aut � cMuþ b sin u ¼ f ðX; tÞ; ðX; tÞ 2 X� ð0; T�;
uðX;0Þ ¼ u0ðXÞ; X 2 X;
@u
@t ðX;0Þ ¼ u0ðXÞ; X 2 X;
uðX; tÞ ¼ 0; ðX; tÞ 2 @X� ð0; T�;

8>>><
>>>:

ð1Þ

where X � R2 is a bounded convex polygon domain with Lipschitz boundary @X;a; c and b are positive constant s,
X ¼ ðx; yÞ; f ðX; tÞ; u0ðXÞ; u0ðXÞ are given smooth functions.

Let W ¼ ut , then problem (1) is equivalent to

@W
@t þ aW � cMuþ b sin u ¼ f ðX; tÞ; ðX; tÞ 2 X� ð0; T�;
@u
@t ¼W; ðX; tÞ 2 X� ½0; T�;
uðX;0Þ ¼ u0ðXÞ; X 2 X;
WðX;0Þ ¼ u0ðXÞ; X 2 X;
uðX; tÞ ¼ 0; ðX; tÞ 2 @X� ð0; T�:

8>>>>><
>>>>>:

ð2Þ

The variational form of problem (2) is to find u;W 2 H1
0ðXÞ, such that for all v 2 H1

0ðXÞ
@W
@t ; v
� �

þ ðaW;vÞ þ aðu;vÞ þ ðb sin u; vÞ ¼ ðf ; vÞ;
ð@u
@t ; vÞ ¼ ðW;vÞ;
ðuð0Þ � u0;vÞ ¼ 0;
ðWð0Þ �u0;vÞ ¼ 0;

8>>><
>>>:

ð3Þ

where uð0Þ ¼ uðX;0Þ; Wð0Þ ¼WðX;0Þ; aðu;vÞ ¼ c
R

XrurvdX.
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