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a b s t r a c t

We consider a general nonlinear time-delay system in which the input signal is piecewise- 
constant. Such systems arise in a wide range of industrial applications, including evapora- 
tion and purification processes and chromatography. We assume that the time-delays—one
involving the state variables and the other involving the input variables—are unknown and 
need to be estimated using experimental data. We formulate the problem of estimating the 
unknown delays as a nonlinear optimization problem in which the cost function measures 
the least-squares error between predicted and measured system output. The main diffi-
culty with this problem is that the delays are decision variables to be optimized, rather 
than fixed values. Thus, conve ntional optimization techniques are not directly applicable.
We propose a new computational approach based on a novel algorithm for computing 
the cost function’s gradient. We then app ly this approach to estimate the time-delays in
two industrial chemical processes: a zinc sulphate purification process and a sodium alu- 
minate evaporation process.

� 2013 Elsevier Inc. All rights reserved.

1. Introductio n

Time-del ay dynamic systems have been an active area of research over the past two decades; see, for example, [1–10] and
the references cited therein. Indeed, time-del ays are inherent in many industrial processes, including evaporation processes 
[11], chromatograp hy processes [12], distillation processes [13], and purification processes [14]. Such processes can be con- 
trolled by varying certain input variables—for example, flow rates, temperatures, and pressures. If the time-delays are 
known, then the problem of determining the optimal input variables (as functions of time) so that the total system cost 
is minimized is a so-called optimal control problem . Such problems can be solved numerically using well-known computa- 
tional techniques [14–17].

In many situations, however , the time-delays are not known exactly. In this case, the delays first need to be estimated 
before optimal control techniques can be applied. Thus, delay estimation is a crucial issue and has attracted significant re- 
search attention over the past decade. The vast majority of delay estimation methods are only applicable to simple systems 
with linear dynamics and a single delay [18–25]. One of the few methods available for handling general nonlinear systems 
with multiple time-delays is the optimizati on-based approach develope d in [26]. In this approach, the problem of estimating 
the time-delays is formulated as a dynamic optimization problem in which the cost function measure s the discrepan cy be- 
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tween predicted output and observed system output at a set of sample times. Solving this optimization problem yields the 
delay values that best fit the given experimental data.

The optimization- based approach developed in [26] is designed for systems with state-delay s rather than input-del ays.
For systems with input-del ays, if the input function is smooth, then the system dynamics will be continuo usly differentiable 
with respect to the input-delays, and thus the approach proposed in [26] can be easily modified to estimate the input-delays 
in this case. Unfortunate ly, the input function is often non-smooth in practical applications. For example, in the evaporation 
process described in [11], the input function represents the solution flow rate, which must be kept constant and is only chan- 
ged at 5 minute intervals to ensure process stability. Thus, the solution flow rate is a non-smooth piecewise-con stant input 
function. The estimation method in [26] is not applicable in such situations.

With this motivation, we consider in this paper the time-delay estimation problem for nonlinear systems in which the 
input function is piecewise-con stant. We assume that the system under considerati on contains one state-delay and one in- 
put-delay, both of which are unknown and need to be estimated using experimental data. Since the input function is discon- 
tinuous, the estimation method in [26] is not applicable in this case. The purpose of this paper is to develop a new method for 
estimating the unknown time-delays. As with [26], we formulate the delay estimation problem as a dynamic optimization 
problem in which the cost function measures the least-squares error between predicted and observed system output. The 
main focus of the paper is on the derivation of a computational procedure for determining the gradient of the cost function.
This procedure, which involves integrating an auxiliary impulsive system with instantaneous jumps forward in time, is far 
more complex than the procedure given in [26], which does not involve any jumps. Moreover, because of the discontinuo us
nature of the input function, the cost function’s gradient does not exist at certain points. We propose a heuristic strategy for 
dealing this complication. This heuristic strategy can be combined with our gradient computation procedure to solve the 
estimation problem using standard nonlinear programmin g algorithms . We finally conclude the paper by showing that this 
approach can successfully estimate the time-delays in two large-scale chemical engineering systems.

2. Problem formulation 

Consider the following nonlinear time-del ay system:

_xðtÞ ¼ f ðxðtÞ; xðt � aÞ;uðtÞ;uðt � bÞÞ; t 2 ½0; T�; ð1Þ
xðtÞ ¼ /ðtÞ; t 6 0; ð2Þ

where T > 0 is a given terminal time ; xðtÞ ¼ ½x1ðtÞ; . . . ; xnðtÞ�> 2 Rn is the state vector ; uðtÞ ¼ ½u1ðtÞ; . . . ;urðtÞ�> 2 Rr is the input
vector; a and b are unknown time-delays that need to be determined; and f : Rn � Rn � Rr � Rr ! Rn and / : R! Rn are gi- 
ven functions. Many dynamic processes in chemical engineering—for example, the distillation process described in [27]—can
be modeled by Eqs. (1) and (2). We assume that f and / are continuously differentiable. We also assume that there exists a
positive real number L1 > 0 such that for all x0; x00 2 Rn and u0;u00 2 Rr ,

jf ðx0; x00;u0;u00Þj 6 L1ð1þ jx0j þ jx00j þ ju0j þ ju00jÞ; ð3Þ

where j � j denotes the Euclidean norm. This assumption is standard in the control systems literature [14,16,28–30].
The output yðtÞ of system (1) and (2) is defined by

yðtÞ ¼ gðxðtÞÞ; t 2 ½0; T�; ð4Þ

where g : Rn ! Rq is a given continuo usly different iable function.
We refer to a as the state-delay and b as the input-delay. The exact values of these delays are unknown; the only infor- 

mation we are given is that a lies within the interval ½amin;amax� and b lies within the interval ½bmin; bmax�, where amin P 0
and bmin > 0. Thus, we have the following bound constraints:

amin 6 a 6 amax; ð5Þ

bmin 6 b 6 bmax: ð6Þ

We assume that the input signal u is a given piecewise-con stant function (this is the case in many engineering systems).
Hence, u can be expresse d as follows:

uðtÞ ¼ ri; t 2 ½ti�1; tiÞ; i ¼ 1; . . . ;p; ð7Þ

where ri 2 Rr; i ¼ 1; . . . ; p, are given vectors and ti; i ¼ 0; . . . ; p, are given time points such that 

�bmax ¼ t0 < t1 < � � � < tp ¼ T:

Eq. (7) can be rewritten as

uðtÞ ¼
Xp

i¼1

riv½ti�1 ;tiÞðtÞ; t 2 ½�bmax; T�; ð8Þ

where the characterist ic function v½ti�1 ;tiÞ : R! R is defined by
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