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a b s t r a c t

The dissipative Kuramoto–Sivashinsky equ ation is studied. It is shown that this equation 
does not pass the Painlevé test and as consequence this equation is not integrable.
Quasi-exact solution of the dissipative Kuramoto–Sivashinsky equation is given.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction 

Definition of the quasi-exact solution was introduced recently in Ref. [1]. This expansion of understa nding exact solution 
allows us to have the approximat e solution of nonlinear differential equation in the case when we cannot find exact solution.

The idea of quasi-exact solution completely reminds the approach of finding the numerical solution of boundary value 
problem.

The matter is when we apply numerica l method for constructing difference solution we always consider other mathemat- 
ical model that is close to model written in the different ial form. However we look for numerica l solution that is close to the 
solution of the original problem.

Our approach of finding quasi-exact solution similar to procedure of obtaining numerical solution. Specially our method 
is effective when we cannot find exact solution of nonlinear differential equation . In this case we look for quasi-exact solu- 
tion of mathematical model that is close to initial model.

Let us apply our method for finding quasi-exact solution of the equation 

ut þ uux þ uxxxx ¼ 0: ð1:1Þ

We call this equation as the dissipative Kuramoto–Sivashinsky equation because (1.1) is the partial case of the famous 
Kuramoto–Sivashinsky equation [2–7]

ut þ uux þ auxx þ buxxx þ duxxxx ¼ 0: ð1:2Þ

It is well known that Eq.(1.2) is not integrabl e equation by the inverse scattering transform but has some exact solutions 
in the case of the following conditions on parameters of equation [8,9]

bffiffiffiffiffiffi
ad
p ¼ 0; � 12ffiffiffiffiffiffi

47
p ; � 16ffiffiffiffiffiffi

73
p ; �4: ð1:3Þ

Exact solutions of (1.2) were found in many papers (see, for a example, [10–20]).
In this paper we show that Eq.(1.1) has only simple rational solution and does not have any solitary wave solution. We

obtain the quasi-exact solution of Eq.(1.1) that is solution of equation in the form 

ut þ uux þ uxxxx ¼ k4FðuÞ; ð1:4Þ
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where k is the wave number for solution of quasi-exact solution for Eq.(1.1).
One can see that in the case k! 0 Eq.(1.4) tends to Eq.(1.1). So we obtain that the exact solution of Eq.(1.4) corresponds to

quasi-exact solution of Eq.(1.1).
Algorithm of finding quasi-exact solution coincides with the algorithm of obtaining exact solutions for nonlinear ordinary 

differential equation presented in papers [21–26]. The possibilit y of our approach for constructing quasi-exact solutions of
nonlinear differential equations is one of the advantage by this algorithm in comparis on with other methods.

2. The Painlevé analysis of the dissipative Kuramoto–Sivashinsky equation 

The Painlevé test for nonlinear differential equations is powerful approach for testing integrable different ial equation 
[27–31].

Let us study the nonlinear ordinary differential Eq. (1.1) taking the traveling wave solutions. Using 

uðx; tÞ ¼ yðzÞ; z ¼ kx�xt: ð2:1Þ

From (1.1) we have after integrati on the following equation 

k4yzzzz þ kyyz �xyz ¼ 0: ð2:2Þ

The equation with the leading members corresponding to (2.2) takes the form [28]

k4yzzzz þ kyyz ¼ 0: ð2:3Þ

Substituting y ¼ a0=zp into Eq. (2.3) we have ða0; pÞ ¼ ð120k3
;3Þ. So, we have the first member of the solution expansion in

the Laurent series in the form 

y ’ 120k3

ðz� z0Þ3
þ � � � ð2:4Þ

Substituting

y ’ 120k3

z3 þ ajzj�3; ð2:5Þ

into (2.3) again and equating the expression at first order aj, we obtain the following Fuchs indices for solution of Eq. (2.2)
[28]

j1 ¼ �1; j2 ¼ 6; j3 ¼
13
2
þ i
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13
2
� i
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2
; ð2:6Þ

where i2 ¼ �1. We see that two Fuchs indices are complex and Eq. (2.2) does not pass the Painlevé test. The Cauchy problem 
for Eq. (1.1) cannot be solved by the inverse scattering transform.

We obtain the following Laurent series for solution of Eq. (2.2)

y ’ 120k3

ðz� z0Þ3
þx

k
þ a6ðz� z0Þ3 �

a2
6ðz� z0Þ9

1248k3 þ � � � ð2:7Þ

From the Laurent series (2.7) we obtain the rational solution of Eq. (2.2) at a6 ¼ 0. It takes the form 

y ¼ x
k
þ 120k3

ðz� z0Þ3
; ð2:8Þ

Fig. 1. Rational solution (2.8) of Eq. (2.2) at k ¼ 0:1; x ¼ 0:1; z0 ¼ 1.
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