
Design and implementation of high-speed buffered crossbars with efficient
load balancing for multi-core SoCs

George Kornaros a,b,*, Theofanis Orphanoudakis c

a Technical University of Crete, Electronics & Computer Engineering Department, Kounoupidiana, Chania, Crete, Greece
b Department of Applied Informatics & Multimedia, Technological Educational Institute of Crete, Stavromenos, Heraklion, Crete, Greece
c University of Peloponnese, Telecommunications Science and Technology Department, Karaiskaki Str., 22100 Tripoli, Greece

a r t i c l e i n f o

Article history:
Available online 17 June 2010

Keywords:
Multi-core
System-on-Chip interconnect
Load-balancing
Hardware dispatcher
Buffered crossbar
Micro-array

a b s t r a c t

A large increase of the number of devices integrated in a single chip in conjunction with the significant
demands of modern applications for performance has led the designers to a system development method-
ology based on integrating multiple pre-verified intellectual property cores. Yet, design productivity
requirements push designers to focus on key micro-architectural solutions to manage more efficiently
the scaling of multi-core SoCs as well as to increase the degree of design automation, particularly as rapid
prototyping using reconfigurable computing is becoming mainstream. In this paper we present a novel
interconnect architecture based on optimized components to efficiently manage SoCs that follow either
a multi-core based approach or are built to support SIMD-style applications that can exploit the processing
power of a pool of hardware resources; first we analyze the design of a crossbar featuring shared-memory
combined input-crosspoint buffering as a solution for efficient implementation of on-chip interconnec-
tion; second we describe the design of a load-balancer featuring configurable proportional allocation of
on-chip resources and in-order delivery as a solution for efficient scheduling and execution of processing
tasks. The main focus of the paper is to describe and evaluate the mechanisms designed to distribute and
manage data transfers so as to implement an efficient interconnection of the integrated cores and control
access to available (either on-chip or off-chip) resources for the implementation of a number of embedded
systems and applications. Each of these challenges is handled by the proposed architecture in an efficient
way in terms of performance, cost in silicon and flexibility.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Each new generation of semiconductor technology increases
significantly the level of integration, functionality, and complexity
provided on a single chip. More and more silicon vendors expect
heterogeneous multi-core solutions in addition to the traditional
multiprocessors, to maximize performance and bandwidth while
staying within acceptable power consumption budgets. As process
features shrink below 65 nm the main challenge that designers of
integrated circuits face is achieving the required functionality, per-
formance and power constraints whilst minimizing design cost
and time to market [1]. The key for achieving this is a methodology
that moves design from the circuit level to system level, concen-
trating on the selection of appropriate pre-designed intellectual
property (IP) blocks and their interconnection [2,3] into a complete

system. Hence, the major concern regarding next-generation
embedded systems focuses on their implementation by using Sys-
tem-on-a-Chip (SoC) design methodologies. SoCs are complex
embedded devices consisting of many hardware and software IP
blocks. As the size and integration level of SoCs grows, the focus
is less on the computation, and increasingly on communication,
while their performance scalability requires in turn sophisticated
interconnection network architectures. Communication-centric
design approaches for multi-core SoCs are getting more consider-
ation and thus Networks-on-Chip (NoCs) have emerged as an alter-
native interconnect solution, where the SoC is regarded as a
network of components. The design complexity of SoCs is expected
to grow proportionally to the number of embedded IP cores and to
the required degree of interaction between these cores in order to
execute complex applications with dynamically varying demands.
Design approaches should therefore focus on generic adaptable
methodologies that can be applicable in different application do-
mains and consider next-generation SoCs mainly as networks of
multiple nodes each representing sources generating data and re-
quests for processing tasks and/or on-chip resources of multiple

0141-9331/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2010.06.002

* Corresponding author at: Technical University of Crete, Electronics & Computer
Engineering Department, Kounoupidiana, Chania, Crete, Greece.

E-mail addresses: kornaros@mhl.tuc.gr (G. Kornaros), fanis@uop.gr (T. Orpha-
noudakis).

Microprocessors and Microsystems 34 (2010) 301–315

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2010.06.002
mailto:kornaros@mhl.tuc.gr
mailto:fanis@uop.gr
http://dx.doi.org/10.1016/j.micpro.2010.06.002
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


forms e.g., processing, storage, transmission etc. that are available
to all other on-chip nodes. Therefore, the contribution of this paper
focuses on NoC architectures and specifically on the efficiency of
the interconnection architecture.

In this paper we present such a novel interconnection architec-
ture basically comprising two building blocks: (i) a shared-mem-
ory combined input-crosspoint buffered crossbar, which can
provide efficient centralized communication across all cores and
(ii) an arbiter controlling access to internal resources, which can
be used for load balancing and efficient resource utilization. We
show that these components can be efficiently used either inde-
pendently or in an integrated fashion to build arbitrarily complex
SoC designs and we demonstrate their use in an example embed-
ded application in the area of genomics/bioinformatics. The objec-
tive of this work is not to describe a specific SoC multi-core design
but rather to demonstrate a practical implementation of the
proposed interconnection architecture, analyze the complexities
a designer of such a system has to cope with and the choices
we made and finally to assess and demonstrate the performance
that this architecture can achieve in a large number of applica-
tions and designs, which are growing rapidly as SoCs are becom-
ing popular. Hence, in order to put our work in perspective we
first review the potential range of applications and their basic
requirements and in the following sections we review related
work, describe the details of the interconnection architecture
and evaluate its performance through simulation results as well
as an actual experimental prototype used as a case study of the
proposed design.

A main motivation behind SoC designs is that cost, in silicon,
energy, and complexity, of making a single processing unit run a
single instruction stream ever faster has eventually reached a limit
imposed by the physical limitations of circuit technology. The
trend today for pure performance is fortunately following a differ-
ent approach stemming from the varying degree of concurrency of
most applications; today’s emerging multi-core systems are capa-
ble of sharing work and executing tasks on independent execution
cores concurrently. If the concurrent functions of a SoC cannot be
statically decomposed at system design time, an alternative ap-
proach is to build a coherent symmetric multiprocessing (SMP)
cluster of processor cores; within such a cluster, multiple process-
ing units are available as a pool to run the available tasks, which
are assigned to processors ‘‘on-the-fly”. The price to be paid for this
flexibility is that it requires a sophisticated interconnect between
the cores; scaling to tens or even hundred of cores forces the inter-
connect requirements to be relatively large and of high-bandwidth.
This negates the area and power advantages alluded to above for
functionally partitioned multi-core systems, but can still be a good
tradeoff. Internally, an on-chip interconnect could comprise a sin-
gle or multi-stage fabric, or independent set of fabrics, each with
its own properties. At the top-level however, the programming
interface is desirable to allow for a uniform access to each pool
of resources.

The foremost features of a future interconnect architecture sup-
porting multi-core single chip designs should include:

� An abstraction layer at the top level that allows developing
applications independent of the number and capacity of the leaf
resources.
� Dispatchers that dynamically allocate and de-allocate resources

according to criteria imposed by system (i.e. energy con-
straints), or by the run-time needs of an application.
� A scalable and flexible interconnect scheme capable to provide

independent paths or partitions that operate non-intrusively
and non-blocking.
� Run-time monitoring of the system for power management,

reliable operation, or run-time functional reconfiguration.

Fig. 1 shows an example organization of a multi-core SoC
abstracting a desirable computation model of today’s embedded
applications. The on-chip nodes are organized with respect to their
functionality as discussed above. Additionally, we also identify a
layered architecture distinguishing the role of on-chip components
responsible for managing and efficiently executing the exchange of
data and the completion of the intermediate processing steps in or-
der to run a multitask or multithread application.

The example of a system instantiation depicted in Fig. 1 above
includes three memory management units (MM) for moving large
amounts of data to and from peripheral memory modules and two
sets of processing units, one for general purpose processing (CPU)
and one for digital signal processing (DSP). To this end multiple re-
sources could be the attached as leaf nodes tailored to specific
application requirements as long as the upper layers provide en-
ough performance, flexibility and manageability at low cost.

Given the above issues we describe an innovative architecture
that addresses the requirements of the dispatching and intercon-
nect layers (as depicted in Fig. 1) of multi-core SoCs. The contribu-
tion of this paper is twofold: first we describe the design of a
crossbar featuring shared-memory combined input-crosspoint
buffering as a solution for efficient implementation of on-chip
interconnection; second we describe the design of a load-balancer
featuring configurable proportional allocation of on-chip resources
and in-order delivery as a solution for efficient scheduling and exe-
cution of processing tasks and implementation of complex embed-
ded applications with stringent requirements for real-time
execution with higher performance. These components can be con-
sidered as standalone IP blocks that can be integrated in the overall
SoC design and can be used in conjunction or independently.

The rest of the paper is organized as follows. Since the proposed
on-chip interconnect aims to address the basic requirements that
stem from the latest SoC design trends, we briefly review in Section
2 the basic properties of modern SoC designs in order to better
identify the different types of IP blocks and their interconnection
requirements as well as related work regarding interconnection
architectures. Section 3 details analytically the contribution of this
paper describing the design architecture and its implementation.
Specifically, Section 3.1 describes the integrated view of the inter-
connection architecture, Section 3.2 presents the internal architec-
ture of the buffered crossbar with shared buffering and Section 3.3
describes the organization of the dispatcher. In Section 4 we eval-
uate the performance of the above components in terms of several
figures of merit and several experimental and simulation results
are given to validate their performance in terms of implementation
cost, latency, throughput, load-balancing and in-order delivery fea-
tures. Section 5 demonstrates an application on a prototype devel-
oped based on the architectural components analyzed previously
and discusses the results of the implementation of the proposed
architecture in this case study. Finally, Section 6 offers the conclud-
ing remarks.

Interconnect 
Layer

Resources

Dispatching
Layer

CPU
#1

CPU
#2

MM
#3

MM
#2

MM
#1

DSP
#2

DSP
#1

Fig. 1. Abstract organization of a multi-core System-on-Chip. An instance of
mapped resources in time is depicted; depending on the application or run-time
requirements the assignment and usage of interconnect fabric and resources may
change dynamically in time.

302 G. Kornaros, T. Orphanoudakis / Microprocessors and Microsystems 34 (2010) 301–315



Download English Version:

https://daneshyari.com/en/article/462911

Download Persian Version:

https://daneshyari.com/article/462911

Daneshyari.com

https://daneshyari.com/en/article/462911
https://daneshyari.com/article/462911
https://daneshyari.com

