Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

APPLIED MATHEMATICS

journal homepage: www.elsevier.com/locate/amc

Common fixed point of power contraction mappings satisfying (E.A) property in generalized metric spaces

Mujahid Abbas^a, Talat Nazir^b, Stojan Radenović^{c,*}

^a Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa

^b Department of Mathematics, Lahore University of Management Sciences, 54792 Lahore, Pakistan

^c University of Belgrade, Faculty of Mechanical Engineering, Krljice Marije 16, 11 120 Beograd, Serbia

ARTICLE INFO

Keywords: Compatible maps (E.A)-property Coincidence point Common fixed point Generalized metric space

ABSTRACT

In this paper, using the setting of generalized metric spaces, existence of unique common fixed point of two pairs of power contraction mappings satisfying (E.A)-property in generalized metric spaces is established. We also provide example to support the results presented herein.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Mustafa and Sims [21] generalized the concept of a metric in which the real number is assigned to every triplet of an arbitrary set. Based on the notion of generalized metric spaces, Mustafa et al. [22–26] obtained some fixed point theorems for mappings satisfying different contractive conditions. Chugh et al. [15] obtained some fixed point results for maps satisfying property *p* in *G*– metric spaces. Saadati et al. [29] studied fixed point of contractive mappings in partially ordered *G*– metric spaces. Shatanawi [32] obtained fixed points of Φ – maps in *G*– metric spaces. Radenović et al. [28] proved some tripled coincidence point results in *G*– metric spaces. Recently, Nashine et al. [27] obtained coincidence and fixed point results in ordered *G*– metric spaces. The study of unique common fixed points of mappings satisfying strict contractive conditions has been at the center of rigorous research activity. Abbas and Rhoades [2] initiated the study of common fixed point theorems in generalized metric spaces (see also, [3,5,6]). Further results in the direction of common fixed points in generalized metric space are obtained by [4,19]. Also, see [8–11,31]. The aim of this paper is to study common fixed point of weakly compatible power contraction maps satisfying (E.A)-property in the framework of *G*– metric spaces.

Consistent with Mustafa and Sims [22], the following definitions and results will be needed in the sequel.

Definition 1.1. Let *X* be a nonempty set. Suppose that a mapping $G: X \times X \times X \rightarrow 211d^+$ satisfies:

- **G**₁: G(x, y, z) = 0 if x = y = z;
- **G**₂: 0 < G(x, y, z) for all $x, y, z \in X$, with $x \neq y$;
- **G**₃: $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$;
- **G**₄: $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$, (symmetry in all three variables); and
- **G**₅: $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ for all $x, y, z, a \in X$.

Then G is called a G- metric on X and (X,G) is called a G-metric space.

^{*} Corresponding author. E-mail addresses: mujahid@lums.edu.pk (M. Abbas), talat@lums.edu.pk (T. Nazir), radens@beotel.rs (S. Radenović).

^{0096-3003/\$ -} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2012.12.090

Definition 1.2. A sequence $\{x_n\}$ in a *G*- metric space *X* is:

- (i) a G- Cauchy sequence if, for any $\varepsilon > 0$, there is an $n_0 \in N$ (the set of natural numbers) such that for all $n, m, l \ge n_0, G(x_n, x_m, x_l) < \varepsilon$,
- (ii) a *G convergent* sequence if, for any $\varepsilon > 0$, there is an $x \in X$ and an $n_0 \in N$, such that for all $n, m \ge n_0, G(x, x_n, x_m) < \varepsilon$.

A *G*- metric space on *X* is said to be *G*- complete if every *G*-Cauchy sequence in *X* is *G*- convergent in *X*. It is known that $\{x_n\}$ *G*- converges to $x \in X$ if and only if $G(x_m, x_n, x) \to 0$ as $n, m \to \infty$.

Proposition 1.3. Let X be a G- metric space. Then the following are equivalent:

- (1) $\{x_n\}$ is G- convergent to x.
- (2) $G(x_n, x_m, x) \rightarrow 0$ as $n, m \rightarrow \infty$.
- (3) $G(x_n, x_n, x) \rightarrow 0$ as $n \rightarrow \infty$.
- (4) $G(x_n, x, x) \rightarrow 0$ as $n \rightarrow \infty$.

Definition 1.4. A *G*- metric on *X* is said to be symmetric if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

Proposition 1.5. Every G- metric on X induces a metric d_G on X given as follows

 $d_G(x, y) = G(x, y, y) + G(y, x, x), \text{ for all } x, y \in X.$ (1.1)

For a symmetric G- metric

$$d_G(x, y) = 2G(x, y, y), \text{ for all } x, y \in X.$$
 (1.2)

However, if G is non-symmetric, then the following inequality holds:

$$\frac{3}{2}G(x,y,y) \leqslant d_G(x,y) \leqslant 3G(x,y,y), \quad \text{for all} \quad x,y \in X.$$
(1.3)

It is also obvious that

 $G(x, x, y) \leq 2G(x, y, y).$

We not that subset A in G-metric space is bounded if it is bounded in metric d_G . Now, we give an example of a non-symmetric G- metric.

Example 1.6. Let $X = \{1, 2\}$ and a mapping $G : X \times X \times X \rightarrow 211d^+$ be defined as:

(x,y,z)	G(x,y,z)
(1,1,1), (2,2,2)	0
(1,1,2), (1,2,1), (2,1,1)	0.5
(1,2,2), (2,1,2), (2,2,1)	1.

Note that *G* satisfies all the axioms of a generalized metric but $G(x, x, y) \neq G(x, y, y)$ for distinct x, y in *X*. Therefore *G*, is a non-symmetric *G*- metric on *X*.

Sessa [30] introduced the notion of the weak commutativity of mappings in metric spaces. Recently Abbas et al. [6] studied R- weakly commuting and compatible mappings in the frame work of G- metric spaces.

Definition 1.7 [6]. Let X be a G- metric space. Mappings $f, g: X \to X$ are called (i) weakly commuting if $G(fgx, fgx, gfx) \leq G(fx, fx, gx)$, for all $x \in X$ (ii) R- weakly commuting if there exists a positive real number R such that $G(fgx, fgx, gfx) \leq RG(fx, fx, gx)$ holds for each $x \in X$ (iii) compatible if, whenever a sequence $\{x_n\}$ in X is such that $\{fx_n\}$ and $\{gx_n\}$ are G- convergent to some $t \in X$, then $\lim_{n \to \infty} G(fgx_n, fgx_n, gfx_n) = 0$ (iv) noncompatible if there exists at least one sequence $\{x_n\}$ in X such that $\{fx_n\}$ and $\{gx_n\}$ are G- convergent to some $t \in X$, then $\lim_{n \to \infty} G(fgx_n, fgx_n, gfx_n) = 0$ (iv) noncompatible if there exists at least one sequence $\{x_n\}$ in X such that $\{fx_n\}$ and $\{gx_n\}$ are G- convergent to some $t \in X$, but $\lim_{n \to \infty} G(fgx_n, fgx_n, gfx_n)$ is either nonzero or does not exist.

Self mappings f and g on X are said to be weakly compatible if fx = gx implies fgx = gfx ([18]). Thus f and g are weakly compatible if and only if f and g are pointwise R-weakly commuting mappings.

In 2002, Aamri and Moutaawakil [1] introduced (E.A) property to obtain common fixed point of two mappings. Recently, Babu and Negash [12] employed this concept to obtain some new common fixed point results (see also [13,14,17]).

Download English Version:

https://daneshyari.com/en/article/4629149

Download Persian Version:

https://daneshyari.com/article/4629149

Daneshyari.com