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a b s t r a c t

This paper derives the functional forms of multiattribute utility functions that lead to a
maximum of one-switch change in preferences between any two uncertain and multi-
period cash flows as the decision maker’s wealth increases through constant annuity pay-
ments. We derive the general and continuous non-constant solutions of the corresponding
functional equations.
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1. Introduction

One of the most important steps in decision analysis is determining the decisions maker’s utility function [12]. Several
authors have discussed this issue and have presented methods to assess and derive the functional form of a single-attribute
utility function based on its risk aversion properties [6,10], or by the change in valuation of a lottery as the decision maker’s
wealth increases [1,2,7,9]. In particular, Pfanzagl [9] showed that if the decision maker’s preferences between any two uncer-
tain and uni-period lotteries does not change as the decision maker’s initial wealth changes, then he must have either a lin-
ear or an exponential utility function. Pfanzagl characterized such utility functions by the functional equation

Wðxþ zÞ ¼ kðzÞWðxÞ þ lðzÞ:

Bell [7] further developed this notion and introduced the idea of characterizing a utility function based on the maximum
number of switches that may occur between any two lotteries as the decision maker’s wealth increases. To illustrate, sup-
pose that a decision maker prefers lottery A to lottery B. Now suppose that all outcomes of the lotteries are modified by a
shift amount z. If the decision maker’s preference between the lotteries does not change for any value of z, then he must have
either a linear or an exponential utility function. Thus linear and exponential utility functions are 0-switch utility functions.
On the other hand, if preferences between the two lotteries can change, but can change only once, as we increase z, then the
decision maker is said to have a 1-switch utility function. The extension to m-switch utility functions is straightforward;
there m is the maximum number of preference changes that can occur as we increase z. Bell [7] characterized the functional
forms of m-switch utility functions. Abbas and Bell [4] (see also [2]) showed that a one-switch utility function, U, must satisfy
the system of functional equations

Uðxþ zÞ ¼ KðzÞUðxÞ þMðzÞWðxÞ þ LðzÞ;
Wðxþ zÞ ¼ kðzÞWðxÞ þ lðzÞ:

In many cases that arise in practice, a decision maker may face multi-period and uncertain cash flows. Abbas, Aczél, and
Chudziak [3] discussed the functional forms of multiattribute utility functions that lead to zero-switch change in preferences
between multi-period cash flows when a decision maker’s initial wealth increases through an annuity that pays a constant
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amount z every time period. This paper derives the functional forms of multiple attribute utility functions that lead to a max-
imum of one-switch change in preferences. In particular, we consider one-switch preferences over uncertain n-period cash
flows as the decision maker’s initial wealth increases. The initial wealth is in the form of an annuity payment that pays an
equal amount, z, every period for n successive periods, and we consider the solutions of the following system of functional
equations:

Uðx1 þ z; . . . ; xn þ zÞ ¼ KðzÞUðx1; . . . ; xnÞ þMðzÞWðx1; . . . ; xnÞ þ LðzÞ; ð1Þ

Wðx1 þ z; . . . ; xn þ zÞ ¼ kðzÞWðx1; . . . ; xnÞ þ lðzÞ: ð2Þ

The remainder of this paper is structured as follows: Section 2 presents the problem formulation and notation. Section 3
presents several Lemmas and preliminary results. Section 4 presents the main results and the general and continuous non-
constant solutions to the system (1) and (2).

2. Problem formulation

Assume that D is a non-empty open subset of Rn (n P 2),

V ðx1 ;...;xnÞ :¼ fz 2 Rjðx1 þ z; . . . ; xn þ zÞ 2 Dg for ðx1; . . . ; xnÞ 2 D;

VD :¼
[

ðx1 ;...;xnÞ2D

V ðx1 ;...;xnÞ;

T :¼ fðx2 � x1; . . . ; xn � x1Þjðx1; . . . ; xnÞ 2 Dg

and, for every ðt1; . . . ; tn�1Þ 2 T,

V ðt1 ;...;tn�1Þ :¼
[

ðx1 ;...;xnÞ2D;ðx2�x1 ;...;xn�x1Þ¼ðt1 ;...;tn�1Þ
V ðx1 ;...;xnÞ:

Furthermore, given a function w : T ! R, we set

Vw–0 :¼
[

ðx1 ;...;xnÞ2D;wðx2�x1 ;...;xn�x1Þ–0

V ðx1 ;...;xnÞ:

Let us recall that a function a : R ! R is said to be additive, provided it satisfies aðxþ yÞ ¼ aðxÞ þ aðyÞ for x; y 2 R; and a
function e : R ! R is said to be exponential, provided eðxþ yÞ ¼ eðxÞeðyÞ for x; y 2 R. It is well known (see e.g. [5]) that every
additive function a : R! R continuous at a point has the form aðzÞ ¼ az for z 2 R with some real constant a. Moreover, every
non-zero exponential function e : R ! R continuous at a point has the form eðzÞ ¼ eaz for z 2 R with some real constant a. In
particular, every non-constant additive or exponential function is non-constant on every interval.

We consider the system of functional Eqs. (1) and (2) for ðx1; . . . ; xnÞ 2 D and z 2 V ðx1 ;...;xnÞ, where U;W : D ! R and
K; L;M; k; l : VD ! R are unknown functions. Eq. (2) has been already solved in [3] under the assumptions that D is open,
V ðx1 ;...;xnÞ is an interval for every ðx1; . . . xnÞ 2 D and a function

V ðx1 ;...;xnÞ 3 z ! Wðx1 þ z; . . . ; xn þ zÞ ð3Þ

is non-constant for atleast one ðx1; . . . ; xnÞ 2 D. It is not difficult to check that in fact [3, Theorem 4.3] remains true (with the
same proof) if, instead of the openness of D, we assume that, for every ðx1; . . . ; xnÞ 2 D, the set V ðx1 ;...;xnÞ is an open interval. Let
us recall that result in such a modified version.

Theorem 2.1. Let D be a nonempty subset of Rn such that V ðx1 ;...;xnÞ is an open interval for every ðx1; . . . ; xnÞ 2 D. Assume that
W : D ! R; k; l : VD ! R and a function given by (3) is non-constant for atleast one ðx1; . . . ; xnÞ 2 D. Then a triple ðW; k; lÞ
satisfies Eq. (2) if and only if one of the following two conditions holds.

(s1) There exist a non-constant additive function a : R ! R and a function w : T ! R such that

kðzÞ ¼ 1 for z 2 VD;

lðzÞ ¼ aðzÞ for z 2 VD;

Wðx1; . . . ; xnÞ ¼ wðx2 � x1; . . . ; xn � x1Þ þ aðx1Þ for ðx1; . . . ; xnÞ 2 D:

8><
>:

(s2) There exist a non-constant exponential function e : R ! R, a constant c 2 R and a not identically zero function w : T ! R

such that

kðzÞ ¼ eðzÞ for z 2 Vw–0;

lðzÞ ¼ cð1� kðzÞÞ for z 2 VD;

Wðx1; . . . ; xnÞ ¼ eðx1Þwðx2 � x1; . . . ; xn � x1Þ þ c for ðx1; . . . ; xnÞ 2 D:

8><
>:
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