
Initial value problems for neutral fractional differential
equations involving a Riemann–Liouville derivative

Tadeusz Jankowski
Gdansk University of Technology, Department of Differential Equations and Applied Mathematics, 11/12 G. Narutowicz Str., 80–233 Gdańsk, Poland
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a b s t r a c t

We present the application of a monotone iterative method to neutral fractional problems.
Given are sufficient conditions which guarantee that a neutral fractional differential equa-
tions with initial condition has a unique solution. Two examples illustrate the results.
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1. Introduction

This paper discusses the existence of solutions of problems:

DqxðtÞ ¼ f ðt;DqxðtÞ;DqxðaðtÞÞ; xðtÞÞ; t 2 J0 ¼ ð0; T�; T > 0;
~xð0Þ ¼ 0;

�
ð1Þ

where Dqx denotes a Riemann–Liouville fractional derivative of x with q 2 ð0;1Þ; ~xð0Þ ¼ t1�qxðtÞjt¼0, and

H1 : f 2 CðJ � R� R� R;RÞ; a 2 CðJ; JÞ; aðtÞ 6 t on J ¼ ½0; T�:

If f does not depend on the second and third arguments, then problem (1) is not of neutral type which was considered, for
example, in papers [1–11] using the monotone iterative method. In this paper, we also apply this technique to obtain existing
results. To do it, we first translate problem (1) to a corresponding functional one, by the substitution DqxðtÞ ¼ yðtÞ. Note that
a similar technique has been discussed for fractional problems considered in paper [10]. To the author’s knowledge, it is a
first paper when the monotone iterative method has been applied to neutral fractional differential problems. If q ¼ 1, then
problem (1) reduces to a corresponding neutral problem in ordinary differential equations.

2. Existence results for problem (1)

Put DqxðtÞ ¼ uðtÞ. Then problem (1) takes the form

uðtÞ ¼ f ðt;uðtÞ;uðaðtÞÞ;BuðtÞÞ � FuðtÞ; t 2 J ¼ ½0; T�; ð2Þ

where operator B is defined by

BuðtÞ ¼ 1
CðqÞ

Z t

0
ðt � sÞq�1uðsÞds: ð3Þ
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Let us introduce the following definition. We say that u 2 CðJ;RÞ is called a lower solution of (2) if

uðtÞ 6 FuðtÞ; t 2 J;

and it is an upper solution of (2) if the above inequality is reversed.
Now we formulate conditions under which problem (2) has extremal solutions in a corresponding sector bounded by low-

er and upper solutions of problem (2).

Theorem 1. Let assumption H1 hold. Let y0; z0 2 CðJ;RÞ be the lower and upper solutions of problem (2), respectively and
y0ðtÞ 6 z0ðtÞ; t 2 J. In addition, let us assume that the following assumptions hold:

H2: f is nondecreasing with respect to the last two variables,
H3: there exists a constant K > �1, such that

f ðt;u; v1;v2Þ � f ðt; �u; v1;v2Þ 6 Kð�u� uÞ

for y0 6 u 6 �u 6 z0.
Then problem (2) has, in the sector ½y0; z0��, minimum and maximum solutions, where

½y0; z0�� ¼ v 2 CðJ;RÞ : y0ðtÞ 6 vðtÞ 6 z0ðtÞ; t 2 Jf g:

Proof. Let

ynþ1ðtÞ ¼ FynðtÞ � K½ynþ1ðtÞ � ynðtÞ�; t 2 J;

znþ1ðtÞ ¼ FznðtÞ � K½znþ1ðtÞ � znðtÞ�; t 2 J

�

for n ¼ 0;1; . . ., with the operator F defined as in formula (2).
Observe that functions y1; z1 are well defined. First, we prove that

y0ðtÞ 6 y1ðtÞ 6 z1ðtÞ 6 z0ðtÞ; t 2 J: ð4Þ

Put p ¼ y0 � y1; q ¼ z1 � z0. It leads to

pðtÞ 6 Fy0ðtÞ � Fy0ðtÞ � KpðtÞ ¼ �KpðtÞ
qðtÞ 6 Fz0ðtÞ � Fz0ðtÞ � KqðtÞ ¼ �KqðtÞ:

This shows that y0ðtÞ 6 y1ðtÞ; z1ðtÞ 6 z0ðtÞ; t 2 J. Now, we put p ¼ y1 � z1. In view of assumptions H2;H3 we have

pðtÞ ¼ Fy0ðtÞ � Fz0ðtÞ � K½y1ðtÞ � y0ðtÞ � z1ðtÞ þ z0ðtÞ� 6 �KpðtÞ:

Hence, y1ðtÞ 6 z1ðtÞ on J. It proves relation (4).
In the next step we show that y1; z1 are the lower and upper solutions of problem (2). Note that

y1ðtÞ ¼ Fy0ðtÞ � Fy1ðtÞ þ Fy1ðtÞ � K½y1ðtÞ � y0ðtÞ� 6 Fy1ðtÞ;
z1ðtÞ ¼ Fz0ðtÞ � Fz1ðtÞ þ Fz1ðtÞ � K½z1ðtÞ � z0ðtÞ�P Fz1ðtÞ;

by assumptions H2;H3. This proves that y1; z1 are the lower and upper solutions of problem (2).
Using the mathematical induction, we can show that

y0ðtÞ 6 y1ðtÞ 6 . . . 6 ynðtÞ 6 ynþ1ðtÞ 6 znþ1ðtÞ 6 znðtÞ 6 � � � 6 z1ðtÞ 6 z0ðtÞ

for t 2 J and n ¼ 0;1; . . ..
It is easy to see that sequences fyn; zng converge uniformly and monotonically to the limit functions y and z, respectively;

where y and z are solutions of the following problems:

yðtÞ ¼ FyðtÞ; t 2 J;

zðtÞ ¼ FzðtÞ; t 2 J

with y0 6 y 6 z 6 z0.
Now, we need to show that y and z are extremal solutions of problem (2) in the sector ½y0; z0��. Let v be any solution of

problem (2) such that y0 6 v 6 z0. Put p ¼ y1 � v ; q ¼ v � z1. Then, in view of assumptions H2 and H3, we see that

pðtÞ ¼ Fy0ðtÞ � K½y1ðtÞ � y0ðtÞ� � FvðtÞ 6 �KpðtÞ;
qðtÞ ¼ FvðtÞ � Fz0ðtÞ þ K½z1ðtÞ � z0ðtÞ� 6 �KqðtÞ:

This shows that y1 6 v 6 z1. By induction, we can show that

yn 6 v 6 zn:

Now, if n!1, then we have the assertion of this theorem.
Our next theorem concerns the case when problem (2) has a unique solution.
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