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1. Introduction

This paper discusses the existence of solutions of problems:

{D"x(t) = f(t,Dx(t), Dx(a(t)),x(t)), teJo=(0,T], T>0,

x(0) =0,
where D denotes a Riemann-Liouville fractional derivative of x with g € (0, 1),%(0) = t'~9x(t)|,_, and
Hi:feCUxRxRxRR), oecC()), alt)<t on J=]0,T].

If f does not depend on the second and third arguments, then problem (1) is not of neutral type which was considered, for
example, in papers [1-11] using the monotone iterative method. In this paper, we also apply this technique to obtain existing
results. To do it, we first translate problem (1) to a corresponding functional one, by the substitution D?x(t) = y(t). Note that
a similar technique has been discussed for fractional problems considered in paper [10]. To the author’s knowledge, it is a
first paper when the monotone iterative method has been applied to neutral fractional differential problems. If ¢ = 1, then
problem (1) reduces to a corresponding neutral problem in ordinary differential equations.

2. Existence results for problem (1)

Put Dx(t) = u(t). Then problem (1) takes the form

u(t) = f(t,u(t),u(a(t)), Bu(t)) = Fu(t), te]=10,T], (2)
where operator B is defined by
u() = ﬁ /O (¢ —5)" "u(s)ds. 3)
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Let us introduce the following definition. We say that u € C(J, R) is called a lower solution of (2) if
u(t) < Fu(t), te],

and it is an upper solution of (2) if the above inequality is reversed.
Now we formulate conditions under which problem (2) has extremal solutions in a corresponding sector bounded by low-
er and upper solutions of problem (2).

Theorem 1. Let assumption Hy hold. Let y,,zo € C(J,R) be the lower and upper solutions of problem (2), respectively and
Yo(t) < zo(t), t €]. In addition, let us assume that the following assumptions hold:

H,: fis nondecreasing with respect to the last two variables,
Hs: there exists a constant K > —1, such that

f(t7u, 1, 112) —f(t,]l 1, Z/z) < K(ﬂ — U)

fory, <u<u<z.
Then problem (2) has, in the sector [y, zo],, minimum and maximum solutions, where

Vo, 2o, ={v € CU,R) : yo(t) < v(t) < 20(t), t €]}

Proof. Let
{yn+1(t) *Fyn KD’n+1 yn( )} tE_],
Zn1(t) = Fza(t) — K[zna (t) — za ()], t €]

forn=0,1,..., with the operator F defined as in formula (2).
Observe that functions y,,z; are well defined. First, we prove that

Yo(t) <y:1(t) S z1(t) < 20(t), te] 4)
Putp =y, —y:, 9 =21 — 2. It leads to
p(t) < Fyo(t) — Fyo(t) — Kp(t) = —Kp(t)
q(t) < Fzo(t) — Fzo(t) — Kq(t) = —Kq(t).
This shows that y,(t) < y,(t), z1(t) <
p(t) = Fyo(t) — Fzo(t) — K[y (£) = Yo(t) — 21(t) + 20(8)] < —Kp(t).
Hence, y, (t) < z1(t) on J. It proves relation (4).
In the next step we show that y,,z; are the lower and upper solutions of problem (2). Note that
Y1(t) = Fyo(t) — Fy, (t) + Fy, () = K[y, (£) = Yo ()] < By (1),
z1(t) = Fzo(t) — Fz1(t) + Fzi (¢ )*K[ﬁ( )*Zo( )] = Fa(t),
by assumptions H,, Hs. This proves that y,,z; are the lower and upper solutions of problem (2).
Using the mathematical induction, we can show that
Yo(t) SY1(0) < .o < Yalt) < Yuia (0) < Znia (1) < za(0) < -+ < z1(0) < 20(0)

forteJjandn=0,1,...
It is easy to see that sequences {y,,z,} converge uniformly and monotonically to the limit functions y and z, respectively;
where y and z are solutions of the following problems:

y(t) =Fy(t), te],
z(t) = Fz(t), te]
with y, <y <z < 2.
Now, we need to show that y and z are extremal solutions of problem (2) in the sector [y, zo],. Let v be any solution of
problem (2) such that y, < v < zp. Put p=y; — v, ¢ = v — z;. Then, in view of assumptions H, and H3, we see that
p(t) = Eyo(t) = Kly: (£) = yo(8)] — Fo(t) < —Kp(0),
q(t) = Fo(t) — Fzo(t) + Kz1(t) — zo(t)] < —Kq(t).

This shows that y; < v < z;. By induction, we can show that

zo(t), t € ]J. Now, we put p =y, — z;. In view of assumptions H,, H; we have

Y SUSZn

Now, if n — oo, then we have the assertion of this theorem.
Our next theorem concerns the case when problem (2) has a unique solution.
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