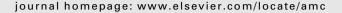
FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation



On subordination-preserving theorem

Janusz Sokół

Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

ARTICLE INFO

Keywords: Hadamard product Dual set Convex functions Prestarlike functions Subordination Preserving operator

ABSTRACT

Let $\mathcal H$ denote the class of analytic functions in the unit disc on the complex plane $\mathbb C$. If the operator $I:\mathcal H\to\mathcal H$ satisfies

$$f(z) \prec g(z) \Rightarrow I[f](z) \prec I[g](z)$$

for all $f,g \in \mathcal{H}$, then it is called subordination-preserving operator on the class \mathcal{H} . In this paper we present a new result of this form which generalize some of the earlier and is connected with the Wilf's conjecture. The applications of main result are also presented.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathcal H$ denote the class of analytic functions in the unit disc $\mathcal U=\{z\colon |z|<1\}$ on the complex plane $\mathbb C$. Let $\mathcal A$ denote the class of all functions $f\in\mathcal H$ normalized by f(0)=0, f'(0)=1. Let $\mathcal S$ be the subclass of $\mathcal A$ whose members are univalent in $\mathcal U$. For $\gamma\geqslant 0, \alpha\geqslant 0$ let us denote

$$\mathcal{K}(0,\gamma) = \left\{g \in \mathcal{H}: g(0) = 1, \ \Re e \frac{zg'(z)}{g(z)} > -\frac{\gamma}{2}, \ z \in \mathcal{U} \right\}, \tag{1.1}$$

$$\mathcal{H}^{\alpha} = \{ h^{\alpha} \in \mathcal{H} : h^{\alpha}(0) = 1, \ \Re e(e^{i\gamma}h(z)) > 0, \ z \in \mathcal{U}, \text{ for certain } \gamma \in \mathbb{R} \}.$$
 (1.2)

Now let

$$\mathcal{K}(\alpha, \beta) = \mathcal{H}^{\alpha} \cdot \mathcal{K}(0, \beta - \alpha), \quad 0 \leqslant \alpha \leqslant \beta, \tag{1.3}$$

and

$$\mathcal{K}(\alpha, \beta) = \{1/f : f \in \mathcal{K}(\beta, \alpha)\}, \quad 0 \leqslant \beta \leqslant \alpha, \tag{1.4}$$

where $X \cdot Y$ is the direct product of $X, Y \subset \mathcal{H}$

$$X \cdot Y = \{f : f = gh, g \in X, h \in Y\}.$$

The class $\mathcal{K}(\alpha,\beta)$ is called the Kaplan class of type α,β , because $\mathcal{K}(1,3)$ is the class of derivatives of the so-called close-to-convex functions \mathcal{C}_0 , first introduced by Kaplan in [3]. The functions in \mathcal{C}_0 form an important subclass of \mathcal{S} . The notion of Kaplan classes unifies also other various geometrically defined classes of functions. It is clear from (1.1) that the class \mathcal{S}_{α}^* of starlike functions of order $\alpha < 1$ may be defined as

$$f\in\mathcal{S}_{\alpha}^{*}\Longleftrightarrow\frac{f}{z}\in\mathcal{K}(0,2-2\alpha),\quad\mathcal{S}_{\alpha}^{*}=\bigg\{f\in\mathcal{A}:\ \Re e\frac{zf^{\prime}(z)}{f(z)}>\alpha,\ z\in\mathcal{U}\bigg\}.$$

E-mail address: jsokol@prz.edu.pl

The class \mathcal{S}_{α}^{*} and the class \mathcal{K}_{α} of convex functions of order $\alpha < 1$

$$\mathcal{K}_{\alpha} := \left\{ f \in \mathcal{A} : \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathcal{U} \right\} = \left\{ f \in \mathcal{A} : \ zf' \in \mathcal{S}_{\alpha}^* \right\}$$

$$\tag{1.5}$$

introduced Robertson in [8]. If $\alpha \in [0; 1)$, then a function in either of these sets is univalent, if $\alpha < 0$ it may fail to be univalent. In particular we denote $\mathcal{S}_0^* = \mathcal{S}^*, \mathcal{K}_0 = \mathcal{K}$, the classes of starlike and convex functions, respectively.

For $f(z) = a_0 + a_1z + a_2z^2 + \cdots$ and $g(z) = b_0 + b_1z + b_2z^2 + \cdots$ the Hadamard product (or convolution) is defined by $(f*g)(z) = a_0b_0 + a_1b_1z + a_2b_2z^2 + \cdots$. The convolution has the algebraic properties of ordinary multiplication. Many of convolution properties were studied by Rusheweyh in [10] and have found a lot of applications in various fields. For $V \subset \mathcal{A}$ denote the dual set V^* as

$$V^* = \bigg\{g \in \mathcal{A} : \forall f \in V, \frac{f(z)}{z} * \frac{g(z)}{z} \neq 0 \ \text{ in } \mathcal{U}\bigg\},$$

and $V^{**} = (V^*)^*$, the second dual. Let $U \subset \mathcal{H}$. Then T is called a test set for U (written $T \sim > U$) if

$$T \subset U \subset T^{**}. \tag{1.6}$$

It is known [10, p. 33] that for $\alpha \ge 1$, $\beta \ge 1$

$$\mathcal{T}(\alpha, \beta) \sim \mathcal{K}(\alpha, \beta),$$
 (1.7)

where

$$\mathcal{T}(\alpha,\beta) = \left\{ \frac{(1+xz)^{[\alpha]}(1+yz)^{\alpha-[\alpha]}}{(1+uz)^{\beta}} : x,y,z \in \overline{\mathcal{U}} \right\}. \tag{1.8}$$

The functions *f* such that

$$\frac{f}{z} \in \mathcal{T}(1, 3 - 2\alpha)^* \tag{1.9}$$

form an important class called the class of prestarlike functions of order $\alpha \leqslant 1$ denoted by \mathcal{R}_{α} . By (1.7) the class \mathcal{R}_{α} is also strongly related to the class $\mathcal{K}(\alpha, \beta)$. Some calculations show that $f \in \mathcal{R}_{\alpha}$ whenever $f \in \mathcal{A}$ and f satisfies

$$f * \frac{z}{(1-z)^{2-2\alpha}} \in \mathcal{S}_{\alpha}^* \text{ when } \alpha < 1, \tag{1.10}$$

while

$$\Re e^{\frac{f(z)}{z}} > \frac{1}{2} \quad \text{for} \quad \alpha = 1. \tag{1.11}$$

The prestarlike functions play a central role in some situations. The special cases $\alpha=0,1/2$ give $\mathcal{R}_0=\mathcal{K}$, $\mathcal{R}_{1/2}=\mathcal{S}_{1/2}^*$. Moreover,

$$\mathcal{K} \subset \mathcal{R}_{\alpha} \subset \mathcal{R}_{\beta} \subset \mathcal{R}_{1} = \overline{co}\mathcal{K} = \left\{ f \in \mathcal{A} : \Re e \frac{f(z)}{z} > \frac{1}{2} \right\} \ \ \text{for} \ \ \alpha \leqslant \beta \leqslant 1,$$

where $\overline{co}\mathcal{K}$ denotes the closed convex hull of the class of convex functions.

We say that the $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in the unit disc \mathcal{U} , written $f \prec g$ if and only if there exits an analytic function $w \in \mathcal{H}$ such that w(0) = 0, |w(z)| < 1 and f(z) = g[w(z)] for $z \in \mathcal{U}$. Therefore $f \prec g$ in \mathcal{U} implies $f(\mathcal{U}) \subset g(\mathcal{U})$. In particular if g is univalent in \mathcal{U} , then

$$f \prec g \iff [f(0) = g(0) \text{ and } f(\mathcal{U}) \subset g(\mathcal{U})].$$
 (1.12)

2. Preliminary results

We shall use the following lemmas.

Lemma 2.1 ([10, p. 37]). For $\alpha, \beta \geqslant 1$ let $f \in \mathcal{T}(\alpha, \beta)^*$ and $g \in \mathcal{K}(\alpha - 1, \beta - 1)$. Then, for any $F \in \mathcal{H}$,

$$\frac{f * gF}{f * g}(\mathcal{U}) \subset \overline{co}(F(\mathcal{U})), \tag{2.1}$$

where $\overline{co}(F(\mathcal{U}))$ denotes the closed convex hull of the set $F(\mathcal{U})$.

The assumptions of the above lemma say that the functions f,g are normalized by f(0)=g(0)=1 but it easy to see that (2.1) remains true if $f(z)/f(0) \in \mathcal{T}(\alpha,\beta)^*$ and $g(z)/g(0) \in \mathcal{K}(\alpha-1,\beta-1)$.

Download English Version:

https://daneshyari.com/en/article/4629169

Download Persian Version:

https://daneshyari.com/article/4629169

<u>Daneshyari.com</u>