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a b s t r a c t

Linear matrix inequalities (LMIs) are widely used to analyze the stability or performance of
time delay descriptor systems (TDDSs). They are solved by the well known interior-point
method (IPM) via minimizing a strictly convex function by transforming the matrix vari-
able into an expanded vector variable. Newton’s method is used to get the unique mini-
mizer of the strictly convex function by the iteration involving its gradient and Hessian.
The obvious disadvantage of the IPM is the high storage requirement for the Hessian.
Hence, this often renders that the IPM cannot solve ‘‘large’’ LMI problems due to finite
memory limit. To overcome this shortcoming, for the first time, an iterative algorithm
based on the steepest descent method (SDM) is proposed to solve LMIs by keeping matrix
variable form instead of transforming it to an expanded vector and without using Hessian
matrix. The gradient of the proposed objective function is explicitly given by a matrix func-
tion with the same dimension of the original matrix variable. The efficiency of the proposed
method is verified with numerical examples.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Linear matrix inequalities (LMIs) are encountered in the stability or stabilizability, controller design and performance
analysis of the time delay descriptor system (TDDS) R [1–5]:

R :E _x tð Þ ¼ AxðtÞ þ Bx t � dð Þ;
xt0 hð Þ ¼ x t0 þ hð Þ ¼ w tð Þ; 8h 2 �d;0½ �; t0;wð Þ 2 Rþ � C �d;0½ �;Rnð Þ;

where x tð Þ 2 Rn is the state vector and d is the constant delay; E 2 Rn�n; A 2 Rn�n and B 2 Rn�n are real constant matrices.
C �d;0½ �;Rnð Þ is the Banach space of continuous vector functions mapping the interval �d;0½ � into Rn with the topology of
uniform convergence and designates the norm of an element w in C �d;0½ �;Rnð Þ by wk kc ¼ suph2 �d;0½ � w hð Þj j. The order of TDDS
R is defined as n, the number of state vector x tð Þ. TDDS R can be used to model the transmission line for large RLC networks
with time delay [6], networked control systems [7,8] and references therein. The matrix E is assumed to be nonsingular and
E�1A is assumed to be Hurwitz (all eigenvalues of E�1A have negative real part). Of particular importance are the positive
definite solutions of LMIs since they are used to test the stability [9–11] of the TDDS Ras well as to design controllers in
H1 control [12–14].
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If there exist P ¼ PT 2 Rn�n and Q ¼ Q T 2 Rn�n satisfying LMI

f Xð Þ ¼ AT PEþ ET PAþ Q ET PB

BT PE �Q

" #
< 0; X ¼

P

Q

� �
; P > 0 and Q > 0; ð1Þ

then the TDDS R is stable by using the Lyapunov–Krasovskii functional

V xð Þ ¼ xT tð ÞET PEx tð Þ þ
Z t

t�d
xT sð ÞQx sð Þds:

Notice that E�1A being Hurwitz is necessary for (1) to have feasible solution X with P > 0 and Q > 0. One popular way to
solve LMI (1) is based on the interior-point method (IPM) [15] together with Newton’s method by two steps: (1) Since
X 2 R2n�n is a matrix not a vector, in order to use the IPM, the problem of finding X for LMI (1) is first transformed into min-
imizing a strictly convex function by transforming the matrix X to a single vector variable y 2 Rn nþ1ð Þ�1 containing all vari-
ables of X. (2) Newton’s method, which is a powerful tool to find the minimizer of a nonlinear function, is used to get the
unique minimizer of the objective function. However, it should be pointed out that the iteration by Newton’s method needs
the gradient with size n nþ 1ð Þ � 1 and Hessian with size n nþ 1ð Þ � n nþ 1ð Þ of the objective function. Furthermore, the order
of TDDS R;n, especially from the electronic systems [16–19], usually is larger than 500. For example, if we employ the IPM to
solve LMI (1) with n ¼ 500, the size of the transformed vector y would be 250500� 1 and the size of Hessian would be
250500� 250500. Obviously it is impossible to deal with this Hessian in practice as it requires more than 460 GB computing
memory. Hence, though Newton’s method is theoretically perfect, it is of little practical use due to the high storage require-
ment coming from Hessian.

As the major difficulty in the IPM comes from the high storage requirement for the Hessian, it is reasonable to find an
alternative method to get the solution of LMI (1) without using it. In this paper, we introduce an iterative method to min-
imize a strictly convex function based on the steepest descent method (SDM) (also called the gradient method [20,21]) to
solve LMI (1). The proposed method has two advantages to avoid the shortcomings shown in the IPM: (1) The proposed iter-
ation is for the matrix variable X not for the transformed vector variable y. (2) The new iteration only needs the gradient of
the defined objective function without using its Hessian, which renders that the proposed method uses lower computing
memory than the IPM. Although the convergence speed of the proposed method is slower than the IPM since the SDM could
not provide the optimal direction and step length for every iteration, the proposed iterative method can be applied to LMI (1)
with large n.

The rest of the paper is organized as follows. In Section 2, the shortcomings of the IPM are given and the proposed iter-
ative algorithm is presented. Numerical examples to demonstrate the effectiveness of the proposed algorithm are shown in
Section 3. Finally, Section 4 draws the conclusion.

Notation. Throughout this paper, the notation X P Y (respectively, X > Y) for real symmetric matrices X and Y means that
the matrix X � Y is positive semi-definite (respectively, positive definite). X ¼ xij

� �
� 0 for matrix X denotes a nonnegative

matrix with xij P 0. For a matrix Q ¼ qij

h i
; Qj j ¼ qij

�� ��h i
� 0, where qij

�� �� are the absolute value qij; i; j ¼ 1;2; . . . ;n: If a is a

complex number, aj j is the modulus of a. MT represents the transpose of the matrix M and if M is invertible, M�1 is the

inverse of M. The vec of a matrix S ¼ s1 s2 � � � sn½ � is defined as vecðSÞ ¼ sT
1 sT

2 � � � sT
n

� �T
: He Xð Þ means X þ XT : The

notation �k kF refers to the Frobenius norm and �k k denotes the consistent matrix norm. Identity matrices are invariably
denoted by I and zero matrices are denoted by 0. The Kronecker product of matrices is denoted by � and the spectral radius
of the matrix X is represented by qðXÞ.

2. Main results

2.1. Brief analysis of IPM

Let P1; . . . ; Pn nþ1ð Þ
2

be a basis for symmetric n� n matrices and Q1; . . . ;Q n nþ1ð Þ
2

also be a basis for symmetric n� n matrices. So
P and Q are linear combinations of P1; . . . ; Pm and Q1; . . . ;Qm, respectively,

P ¼

p11 p12 � � � p1n

p12 p22 � � � p2n

..

. ..
. . .

. ..
.

p1n p2n � � � pnn

266664
377775 ¼

Xn

i¼1

Xn

j¼i

pijPi;

Q ¼

q11 q12 � � � q1n

q12 q22 � � � q2n

..

. ..
. . .

. ..
.

q1n q2n � � � qnn

266664
377775 ¼

Xn

i¼1

Xn

j¼i

qijQ i:
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