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a b s t r a c t

In this paper, the authors investigate two families of generalized Lauricella polynomials
which are known as the Carlitz–Srivastava polynomials of the first and second kinds. By
means of their multiple integral representations, it is shown how one can linearize the
product of two different members of each of these two families of the Carlitz–Srivastava
polynomials. Upon suitable specialization of the main results presented in this paper,
the corresponding integral representations are deduced for such familiar classes of multi-
variable hypergeometric polynomials as (for example) the Lauricella polynomials FðrÞD in r
variables and the Appell polynomials F1 in two variables. Each of these integral represen-
tations, which are derived as special cases of the main results in this paper, may also be
viewed as a linearization relationship for the product of two different members of the asso-
ciated family of multivariable hypergeometric polynomials.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction and definitions

Over four decades ago, Srivastava [14] introduced and investigated the following general class of polynomials:
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k!
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where fKm;ngm;n2N0
is a suitably bounded double sequence of essentially arbitrary (real or complex) parameters, ½j� denotes

the greatest integer in j 2 R and ðkÞm denotes the Pochhammer symbol or the shifted factorial, since

1ð Þn ¼ n! ðn 2 N0Þ;

which is defined, in terms of the familiar Gamma function, by

ðkÞm :¼ Cðkþ mÞ
CðkÞ ¼

1 ðm ¼ 0; k 2 C n f0gÞ
kðkþ 1Þ . . . ðkþ n� 1Þ ðm ¼ n 2 N; k 2 CÞ;

�

it being understood conventionally that ð0Þ0 :¼ 1 and assumed tacitly that the C-quotient exists.
Srivastava’s polynomials SN

n ðzÞ and their variants have been considered, in recent years, by numerous other workers on
the subject (see, for example, [5, p. 145 et seq.], [7], [8, p. 448 et seq.], [9,10] and [11,15,12]) (see also many other works
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on the polynomials belonging the general class SN
n ðzÞ, which are cited in each of these earlier references). On the other hand,

motivated substantially by the work of Carlitz [2], Carlitz and Srivastava [3,4] considered two families of multivariable
hypergeometric polynomials associated with the following particularly simple form of the (Srivastava–Daoust) generalized
Lauricella function:
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where the parameters a; bj and c are arbitrary complex numbers and (for j ¼ 1; . . . ; r) the coefficients hj;/j and wj are, in
general, nonnegative real numbers.

Carlitz–Srivastava Polynomials of the First Kind (see [3,p. 43]):
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which obviously corresponds to (1) when

a ¼ �m; hj ¼ mj and bj ¼ aj ðj ¼ 1; . . . ; r; m 2 N0; mj 2 NÞ:

Carlitz–Srivastava Polynomials of the Second Kind (see [4, p. 143]):
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which corresponds to (1) when

hj ¼ lj; bj ¼ �mj and /j ¼ pj and wj ¼ mj ðj ¼ 1; . . . ; r; mj 2 N0; pj 2 NÞ:

Here, and in what follows, we find it to be convenient to abbreviate the array of r parameters m1; . . . ;mr by ðmrÞ and we write
m1 þ � � � þmr ¼ m:

Indeed, in their special case when

lj ¼ mj ¼ pj ¼ 1 ðj ¼ 1; . . . ; rÞ;

each of the Carlitz–Srivastava polynomials defined by (2) and (3) reduces to the Lauricella polynomials considered earlier in
the aforementioned work by Carlitz [2, p. 270, Eq. (1.8)].

Our main objective in this investigation is first to derive several multiple integral representations associated with the
multivariable hypergeometric polynomials defined by (2) and (3). We also consider several special cases and consequences
of our main results. Each of the integral representations, which are derived in this paper, may be viewed also as a lineariza-
tion relationship for the product of two different members of the associated family of multivariable hypergeometric
polynomials.

2. Integral representations for the generalized Lauricella polynomials

First of all, by repeatedly applying such elementary series identities as follows (see, for example, [16, p. 52, Eq. 1.6(3)]):X1
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it is easily seen for a suitably bounded multiple sequence
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provided that each of the series involved is absolutely convergent. In fact, upon setting

Xðk1; . . . ; krÞ ¼ f k1 þ � � � þ krð Þ
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