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a b s t r a c t

This paper is devoted to stability analysis of solutions of nonlinear neutral differential equa-
tions with piecewise constant delay. These results form the basis for obtaining insight into
the analogous properties of numerical solutions generated by BNf� stable Runge–Kutta
methods. It is showed, theoretically and numerically, that two classes of Runge–Kutta
methods considered in literature are contractive and asymptotically stable. Numerical
experiments also demonstrate that a class of Runge–Kutta methods can preserve their
original convergence order for ODEs but not the other class of Runge–Kutta methods.

� 2012 Elsevier Inc. All rights reserved.

1. Neutral delay differential equations with piecewise constant delay

The problems of interest are evolutionary problems of the type

y0ðtÞ ¼ f ðt; yðtÞ; yð½t�Þ; y0ð½t�ÞÞ; t P 0; ð1:1aÞ

subject to

yð0Þ ¼ /; ð1:1bÞ

where ½x� is the greatest integer less or equal to x; / 2 CN is the initial datum, f : ½0;1Þ� CN � CN � CN ! CN is continuous
and satisfies the following conditions:

Rehy1 � y2; f ðt; y1;u;vÞ � f ðt; y2; u;vÞi 6 aðtÞky1 � y2k
2; 8t P 0; y1; y2;u;v 2 CN; ð1:2aÞ

kf ðt; y;u;v1Þ � f ðt; y; u;v2Þk 6 cðtÞkv1 � v2k; 8t P 0; y;u;v1; v2 2 CN; ð1:2bÞ
kHðt; y;u1;v ;wÞ � Hðt; y; u2; v;wÞk 6 .ðtÞku1 � u2k; 8t P 0; y;u1;u2;v ;w 2 CN ; ð1:2cÞ

where aðtÞ; cðtÞ; .ðtÞ are continuous functions and

Hðt; y;u;v ;wÞ :¼ f ðt; y;u; f ð½t�;u;v ;wÞÞ:

This is a particular case of equations with piecewise continuous arguments, or EPCA (see the monograph of Wiener [19]), and
is a particular neutral delay differential equations of the type

y0ðtÞ ¼ f ðt; yðtÞ; yðgðtÞÞ; y0ðgðtÞÞÞ; t P 0;
yðtÞ ¼ /ðtÞ; t 6 0;

�
ð1:3Þ
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which provide a mathematical instrument to applied science [7,8,3,4].
In his book [19], Wiener presented some properties of the solution to the following linear problem

y0ðtÞ ¼ A0yðtÞ þ A1yð½t�Þ þ A2y0ð½t�Þ; t P 0;
yð0Þ ¼ /;

�
ð1:4Þ

where A0; A1; A2 are constant N � N matrices and yðtÞ is a vector of N elements.

Definition 1.1 (Wiener [19], see also [18]). A solution of (1.1) on ½0;1Þ is a function yðtÞ that satisfies the conditions:

(i) yðtÞ is continuous on ½0;1Þ.
(ii) The derivative y0ðtÞ exists at each point t 2 ½0;1Þ, with the possible exception of the points ½t� 2 ½0;1Þwhere one-sided

derivatives exist.
(iii) Eq. (1.1) is satisfied on each interval ½m;mþ 1Þ � ½0;1Þ with integral end-points. Throughout this paper, m denotes a

non-negative integer.

Theorem 1.1 (Wiener [19]). If the matrices A0 and B ¼ I � A2 are nonsingular, then problem (1.4) has on ½0;1Þ a unique solution

yðtÞ ¼ EðftgÞE½t�ð1Þ/; ð1:5Þ

where ftg is the fractional part of t and

EðtÞ ¼ I þ ðeA0t � IÞS and S ¼ A�1
0 B�1ðA0 þ A1Þ:

In [11], Lv et al. investigated the stability of Euler–Maclaurin methods for more general linear neutral differential equa-
tions with piecewise continuous arguments. Following [18], Wang and Li in [13] gave the definition of the solution of prob-
lem (1.1) and considered the dissipativity of problem (1.1). In this paper, we concentrate on the stability of solutions to
nonlinear problem (1.1). The uniqueness of (1.1) will be proved in Section 2. The solution of (1.1) may be written
yðtÞ � yð/; tÞ; then, the stability results are concerned with yð/; tÞ � yðw; tÞ or, for numerical stability, approximations to
yð/; tÞ � yðw; tÞ. The stability of the numerical solution produced by BNf -stable Runge–Kutta methods (RKMs) is investigated
in Section 3. Two numerical examples are given in the last section of this paper: one is to demonstrate the stability of the
methods considered in this paper; the other is to illustrate the convergence of these methods.

As a special case of (1.1a) we have the delay differential equations (DDEs) with piecewise constant delay

y0ðtÞ ¼ f ðt; yðtÞ; yð½t�ÞÞ; t P 0; ð1:6Þ

which has been widely studied by applied mathematicians and numerical researchers [5,9,16,17,10]. The general theory and
basic results for differential equations with piecewise constant delay have by now been thoroughly investigated in the book
of Wiener [19].

2. The stability of the exact solutions

For any u 2 CN and any t P 0, we shall always assume that equations x ¼ f ð½t�;u;u; xÞ has a unique bounded solution
xðu; ½t�Þ. Then we have the following stability results.

Theorem 2.1. Suppose problem (1.1) satisfies conditions (1.2) and

aðtÞ < 0; cðtÞ < 1;
.ðtÞ � að½t�ÞcðtÞ

�aðtÞ 6 1; 8t P 0: ð2:1Þ

Then we have

kyð/; tÞ � yðw; tÞk 6 k/� wk; 8t P 0; ð2:2Þ

which means that this system is contractive.

Proof. To prove the theorem, let us define YðtÞ ¼ kyð/; tÞ � yðw; tÞk2. Then we have

Y 0ðtÞ ¼ 2Rehyð/; tÞ � yðw; tÞ; y0ð/; tÞ � y0ðw; tÞi
6 2aðtÞYðtÞ þ 2Rehyð/; tÞ � yðw; tÞ; f ðt; yðw; tÞ; yð/; ½t�Þ; y0ð/; ½t�ÞÞ � f ðt; yðw; tÞ; yðw; ½t�Þ; y0ðw; ½t�ÞÞi
6 2aðtÞYðtÞ þ 2kyð/; tÞ � yðw; tÞkUðtÞ; ð2:3Þ

where

UðtÞ ¼ kf ðt; yðw; tÞ; yð/; ½t�Þ; y0ð/; ½t�ÞÞ � f ðt; yðw; tÞ; yðw; ½t�Þ; y0ðw; ½t�ÞÞk:
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