FISFVIFR

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

Properties of certain transforms defined by convolution of analytic functions

Ming-Sheng Liu^a, Shigeyoshi Owa^{b,*}, Nian-Sheng Song^a

ARTICLE INFO

Keywords: Univalent Starlike Integral transform Convolution

ABSTRACT

Let $\mathcal A$ be the class of all analytic functions f in the open unit disk $\mathbb U$ of the form $f(z)=z+\sum_{k=2}^\infty a_k z^k$. For $\lambda>0$, $\operatorname{Re} c>0$ and $\alpha<1$, two subclasses $\mathcal P(\lambda)$ and $\mathcal S_\alpha^*$ of $\mathcal A$ are introduced. In this paper, we find suitable conditions on λ , c and α such that for each $f\in \mathcal P(\lambda)$ satisfying $(z/f(z))*F(1,c;c+1;z)\neq 0$ for all $z\in \mathbb U$, the function

$$G(z) = \frac{z}{(z/f(z)) * F(1,c;c+1;z)} \qquad (z \in \mathbb{U})$$

belongs to $\mathcal{P}(\lambda')$, \mathcal{S}^*_{α} or $\mathcal{S}^*(\alpha)$. Here $\mathcal{S}^*(\alpha)$ denotes the usual class of starlike of order α ($0 \le \alpha < 1$) in \mathbb{U} . We also determine necessary conditions so that $f \in \mathcal{P}(\lambda)$ implies that

$$\left| \frac{zG'(z)}{G(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta}, \quad |z| < r,$$

where $r = r(\lambda, c; \beta)$ will be specified.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let A be the class of functions normalized by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$
 (1.1)

which are analytic in the open unit disk $\mathbb{U}=\{z\in\mathbb{C}:|z|<1\}$. Also, we let $\mathcal{S}=\{f\in\mathcal{A}:f \text{ is univalent in }\mathbb{U}\}$. A function $f\in\mathcal{A}$ is said to be starlike if f is univalent and $f(\mathbb{U})$ is a starlike domain with respect to z=0. The class of all starlike functions is denoted by \mathcal{S}^* . It is well known that $f\in\mathcal{A}$ is starlike with respect to the origin if and only if $f(0)=0, f'(0)\neq 0$ and

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \quad (z \in \mathbb{U}).$$

For α < 1, we define

$$\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha, \quad z \in \mathbb{U} \right\}$$

E-mail addresses: liumsh65@163.com (M.-S. Liu), owa@math.kindai.ac.jp, Shige21@ican.zaq.ne.jp (S. Owa), niansheng009@163.com (N.-S. Song).

^a School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People's Republic of China

^b Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

^{*} Corresponding author.

and

$$\mathcal{S}_{\alpha}^{*} = \bigg\{ f \in \mathcal{A} : \left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 - \alpha, \quad z \in \mathbb{U} \bigg\}.$$

It is evident that $\mathcal{S}^*(0) \equiv \mathcal{S}^*$, and $\mathcal{S}^*_{\alpha} \subset \mathcal{S}^*(\alpha) \subset \mathcal{S}^*$ for $0 \leqslant \alpha < 1$.

For $\lambda > 0$, let $\mathcal{P}(\lambda)$ denote the class of all functions $f \in \mathcal{A}$ satisfying the condition

$$\left|\left(\frac{z}{f(z)}\right)''\right|\leqslant \lambda,\quad z\in\mathbb{U}.$$

Also, let $\mathcal{U}(\lambda)$ denote the class of all functions $f \in \mathcal{A}$ satisfying the condition

$$\left|f'(z)\left(\frac{z}{f(z)}\right)^2-1\right|\leqslant \lambda,\quad z\in \mathbb{U}.$$

We remark that $f(z)/z \neq 0$ for $z \in \mathbb{U}$ for $f \in \mathcal{P}(\lambda)$ or $f \in \mathcal{U}(\lambda)$.

Obradović and Ponnusamy [5] proved that

$$\mathcal{P}(2\lambda) \subset \mathcal{U}(\lambda) \subset \mathcal{S}$$
 for $0 \le \lambda \le 1$.

Note that the function $g(z) = z + z^2/2$ belongs to $\mathcal{U}(1)$ but does not belong to the class $\mathcal{P}(2)$. We also know that $\mathcal{U}(1) \subseteq \mathcal{S}$ (see [1,8]) and so, one has $\mathcal{U}(\lambda) \subseteq \mathcal{S}$ for $0 \le \lambda \le 1$ which implies $\mathcal{P}(2\lambda) \subseteq \mathcal{S}$ for $0 \le \lambda \le 1$. The inclusions $\mathcal{P}(2\lambda) \subset \mathcal{U}(\lambda) \subset \mathcal{S}$ improve the result of Nunokawa et al. [3] who proved that functions in $\mathcal{P}(2)$ are just univalent in \mathbb{U} . Obradović, Ponnusamy et al. discussed the functions $f \in \mathcal{U}(\lambda)$ in [4,5,7], given some conditions such that f belongs to some function class, for example, \mathcal{S}^* or $\mathcal{S}^*(\alpha)$ et al. with missing coefficients. Further, the integral transform of various subclasses of \mathcal{S} have been investigated by a number of authors, see for example the works of Ponnusamy [10], Ponnusamy et al. [11,12] and the references therein.

Recently, Obradović and Ponnusamy [6] found the conditions on λ and $c \in \mathbb{C}$ with $\operatorname{Re} c \geqslant 0 \neq c$ such that for each $f \in \mathcal{U}(\lambda)$ satisfying $\frac{Z}{f(z)} * F(1,c;c+1;z) \neq 0$ for all $z \in \mathbb{U}$ the transform

$$G(z) = \frac{z}{(z/f(z)) * F(1,c;c+1;z)} \quad (z \in \mathbb{U})$$

is univalent or starlike. Here ∗ denotes the convolution (or Hadamard product) of analytic functions on U:

$$(f*g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n \quad (z \in \mathbb{U})$$

for

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \qquad g(z) = \sum_{n=0}^{\infty} b_n z^n,$$

and F(a,b;c;z) denotes the Gaussian hypergeometric function. If $f(z)=z+\sum_{n=2}^{\infty}a_nz^n\in\mathcal{A}$, then,

$$\textit{zF}(\textit{a},\textit{b};\textit{c};\textit{z})*f(\textit{z}) := \sum_{\textit{n}=1}^{\infty} \frac{(\textit{a})_{\textit{n}-1}(\textit{b})_{\textit{n}-1}}{(\textit{c})_{\textit{n}-1}(1)_{\textit{n}-1}} \textit{a}_{\textit{n}} \textit{z}^{\textit{n}} \quad (\textit{c} \neq -1,-2-3,\ldots;\textit{z} \in \mathbb{U}),$$

where $(a)_n$ denotes the Pochhammer symbol defined by $(a)_0=1$ and $(a)_n:=a(a+1)\cdots(a+n-1)$ for $n\in\mathbb{N}$. The object of the present paper is to find conditions such that the function G(z) is in $\mathcal{P}(\lambda')$, \mathcal{S}_{α}^* or $\mathcal{S}^*(\alpha)$ whenever $f\in\mathcal{P}(\lambda)$. For the proof of our main results, we need the following lemma.

Lemma 1.1. Suppose that $P(z) = p_2 z^2 + \cdots$ is analytic in the unit disk $\mathbb{U}, \lambda > 0$ and $c \in \mathbb{C}$ with $Rec \ge 0 \ne c$ such that

$$\left| P(z) + \frac{1}{c} z P'(z) \right| < \lambda, \quad z \in \mathbb{U}. \tag{1.2}$$

Then

$$|P(z)| < \lambda \frac{|c|}{|c+2|}, \quad z \in \mathbb{U}.$$

Proof. The proof is well-known and is an easy consequence of a result due to Hallenbeck and Ruscheweyh [2]. The same may be obtained also as the gap series version of Eq. (16) in [9] or as an easy consequence of a differential subordination result. \Box

Download English Version:

https://daneshyari.com/en/article/4629231

Download Persian Version:

https://daneshyari.com/article/4629231

<u>Daneshyari.com</u>