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ARTICLE INFO ABSTRACT

Keywords: Iterative solution of a nonlinear equation f{x) =0 usually means a repetitive scheme to
NOH-I?Hear equations locate a fixed point of a related equation x = g(x). Kogak’s acceleration method smoothly
Itefanve’ methods gears up iterations with the aid of a superior secondary solver gx=x+ G(x)(g(x) — x) =
Newton’s method (g(x) — m(x)x)/(1 — m(x)) where G(x)=1/(1 —m(x)) is a gain and m(x)=1— 1/G(x) is a

Convergence acceleration straight line slope. The accelerator shows that a previously published article [A. Biazar, A.

Amirtemoori, An improvement to the fixed point iterative method, AMC 182 (2006) 567-
571] unwittingly exaggerated the convergence order of the solver it presented. This solver
boils down to an indirect application of Newton’s method solving g(x) — x = 0 which means
that it is of second order. Hence, their claim that it “increases the order of convergence as
much as desired” is false! The scheme wastes higher derivatives.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction
A nonlinear equation

X =g(x) (1)

can be solved by a repetitive scheme x,.; = g(x) where k is the iteration count. If z satisfies (1), then z is called a fixed-point of
g. Let ¢, = x, — z. If there exist a real number n and nonzero constant ¢ such that

lim (Je]/lel"),
k—o0

then n and c are respectively called the convergence order and the asymptotic error constant. According to Traub [5], if n is
integral, then

¢ = lim (&,1/7) = g"(2)/n!
If n=1, then g'(z) # 0. An integral convergence order n > 1 means that

g2)=g"2=-=g""2=0 g"z##0. 2)

&x+1 is proportional to & in the vicinity of z. Thus, nth order solvers are a subset of (n — 1)th order solvers. Past this point, a
function mentioned without an argument implies that the latter is x. Note also that a subscript starting with a capital letter is
assigned to a solver g, convergence order n, and asymptotic error constant c to indicate the person to whom g is attributed.

E-mail address: mckocak@ankara.edu.tr

0096-3003/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2013.03.034


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.amc.2013.03.034&domain=pdf
http://dx.doi.org/10.1016/j.amc.2013.03.034
mailto:mckocak@ankara.edu.tr
http://dx.doi.org/10.1016/j.amc.2013.03.034
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

10054 M.C. Kogak/Applied Mathematics and Computation 219 (2013) 10053-10058

Nomenclature

c asymptotic error constant

Cx asymptotic error constant of Kogak’s solver
f nonlinear function to be solved

g nonlinear solver

8id ideal solver, gy =z

&pl piecewise linearisation

8ps partial substitution

gk Kogak’s solver (accelerator)

N Newton'’s second-order solver

G partial substitution gain

k iteration counter

m straight line slope

Mig ideal linearisation slope

n convergence order

Nk convergence order of Kogak’s solver
X independent variable

w weight (see Eq. (5))

Wig limit for w at z (determined by n)
z fixed-point

&k error at the kth iteration, &, = x; — z

2. Kocgak’s accelerator

This method [2-4] accelerates a given g by generating and solving a secondary solver gi through the fixed-point preserv-
ing transformation

g=x+GEg—-x) = (g-mx)/1-m), G=1/(1-m), m=1-1/G, (3)

where G is a gain and m is a straight line slope. Thus, gk is both partial substitution (gs) and piecewise linearisation (g) that
is gk = gps = gp1. (A straight line of slope m joins (x,g) to (g1.&p).) The second version of Kogak’s accelerator [3,4] has three
cases:

(a) If n=1, then ng = 3, cx = g¢(z)/3!, and gi (z) = —0.5gm(z) /(1 — g'(2)).

(b) If n=2, then ng =3, cx = g¥(2)/3!, and gy (z) = —0.5g/m(z).

(c)Ifn>2,thenng=n+1,cx =gr ™V (z)/(n+1), and g (z) = —g™V(z)/n.
Remark 1. The ‘ideal’ solver is g;; = z which needs just one trial from any starting point. Albeit, z is unknown until the end! g4
can be harnessed in post priori analysis, comparative studies, and troubleshooting. Regardless of the multiplicity of z [2], the
ideal slope is miq = (g — z)/(Xx — Z) = &r+1/€k. On the other hand, according to the mean value theorem for derivatives,

€-2)/(x=-2) = (8-8(2)/(x—2) =g (xi),% € (x,2).

(Note that this does not necessarily mean g'(x;) € (x,2)!) )
In line with (3), the set of requirements for ng to exceed 1, is g}? (z) =0, i=1,2,...,ng — 1. It has been previously shown
[2-4] that an equivalent set of end-point conditions is
mi V) =gW2)/i, i=1,2,...,nx -1, mP@2) =m(z) =g(2). 4)

There is plenty room to tune m subject to (4).
Remark 2. If m = g'(z), then m(z) = g'(z) and so ng= 2.

Remark 3. If m =g/, then m'(z) = g"(z), m"(z) = g”(z), and so on. In the light of (4), nx = 2 only because m'(z) # g"(z)/2 unless
g"(z) = 0. The application is equivalent [2] in this case to utilising Newton’s method (gy) solving a secondary function
g —x=0. Indeed,

En=X-(E&-x/Eg-1)=(@Eg-m)/1-m), m=g.

Remark 4. If m= (g +g(z))/2, then m(z)=g(z), m'(z)=g"(z)/2, m"(z)=g"(z)/2, and so on. As a result, ng=3 since
m”(z) # g"”(z)/3 unless g"”(z) = 0.
Remark 5. Let

m=wg +(1-w)g'(z) =g'(2) +w(g' - g'(2), (5)
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