FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Koçak's method shows that an unwittingly exaggerated convergence order is in fact 2

Mehmet Çetin Koçak

Chemical Engineering Department, Engineering Faculty, Ankara University, 06100 Tandoğan, Ankara, Turkey

ARTICLE INFO

Keywords: Non-linear equations Iterative methods Newton's method Convergence acceleration

ABSTRACT

Iterative solution of a nonlinear equation f(x) = 0 usually means a repetitive scheme to locate a fixed point of a related equation x = g(x). Koçak's acceleration method smoothly gears up iterations with the aid of a superior secondary solver $g_K = x + G(x)(g(x) - x) = (g(x) - m(x)x)/(1 - m(x))$ where G(x) = 1/(1 - m(x)) is a gain and m(x) = 1 - 1/G(x) is a straight line slope. The accelerator shows that a previously published article [A. Biazar, A. Amirtemoori, An improvement to the fixed point iterative method, AMC 182 (2006) 567–571] unwittingly exaggerated the convergence order of the solver it presented. This solver boils down to an indirect application of Newton's method solving g(x) - x = 0 which means that it is of second order. Hence, their claim that it "increases the order of convergence as much as desired" is false! The scheme wastes higher derivatives.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A nonlinear equation

$$x = g(x) \tag{1}$$

can be solved by a repetitive scheme $x_{k+1} = g(x_k)$ where k is the iteration count. If z satisfies (1), then z is called a *fixed-point* of g. Let $\varepsilon_k = x_k - z$. If there exist a real number n and nonzero constant c such that

$$\lim_{k\to\infty} (|\varepsilon_{k+1}|/|\varepsilon_k|^n),$$

then n and c are respectively called the *convergence order* and the *asymptotic error constant*. According to Traub [5], if n is integral, then

$$c = \lim_{k \to \infty} \left(\varepsilon_{k+1} / \varepsilon_k^n \right) = g^{(n)}(z) / n!$$

If n = 1, then $g'(z) \neq 0$. An integral convergence order n > 1 means that

$$g'(z) = g''(z) = \dots = g^{(n-1)}(z) = 0, \quad g^{(n)}(z) \neq 0.$$
 (2)

 ε_{k+1} is proportional to ε_k^n in the vicinity of z. Thus, nth order solvers are a subset of (n-1)th order solvers. Past this point, a function mentioned without an argument implies that the latter is x. Note also that a subscript starting with a capital letter is assigned to a solver g, convergence order n, and asymptotic error constant c to indicate the person to whom g is attributed.

E-mail address: mckocak@ankara.edu.tr

```
Nomenclature
С
           asymptotic error constant
          asymptotic error constant of Koçak's solver
c_K
           nonlinear function to be solved
f
          nonlinear solver
g
          ideal solver, g_{id} = z
gid
           piecewise linearisation
g_{pl}
gps
           partial substitution
           Koçak's solver (accelerator)
g_K
           Newton's second-order solver
g_N
G
           partial substitution gain
k
           iteration counter
m
          straight line slope
          ideal linearisation slope
m_{id}
          convergence order
n
n_K
           convergence order of Koçak's solver
х
           independent variable
           weight (see Eq. (5))
w
w_{id}
           limit for w at z (determined by n)
z
           fixed-point
          error at the kth iteration, \varepsilon_k = x_k - z
\varepsilon_k
```

2. Koçak's accelerator

This method [2–4] accelerates a given g by generating and solving a secondary solver g_K through the fixed-point preserving transformation

$$g_K = x + G(g - x) = (g - mx)/(1 - m), \quad G = 1/(1 - m), \quad m = 1 - 1/G,$$
 (3)

where G is a gain and m is a straight line slope. Thus, g_K is both partial substitution (g_{ps}) and piecewise linearisation (g_{pl}) that is $g_K \equiv g_{DS} \equiv g_{Dl}$. (A straight line of slope m joins (x,g) to (g_{Dl},g_{Dl}) .) The second version of Koçak's accelerator [3,4] has three cases:

- (a) If n = 1, then $n_K = 3$, $c_K = g_K'''(z)/3!$, and $g_K'''(z) = -0.5g'''(z)/(1 g'(z))$.
- (b) If n = 2, then $n_K = 3$, $c_K = g_K''(z)/3!$, and $g_K''(z) = -0.5g_K''(z)$. (c) If n > 2, then $n_K = n + 1$, $c_K = g_K^{(n+1)}(z)/(n+1)!$, and $g_K^{(n+1)}(z) = -g^{(n+1)}(z)/n$.

Remark 1. The 'ideal' solver is $g_{id} = z$ which needs just one trial from any starting point. Albeit, z is unknown until the end! g_{id} can be harnessed in post priori analysis, comparative studies, and troubleshooting. Regardless of the multiplicity of z [2], the ideal slope is $m_{id} = (g_k - z)/(x_k - z) = \varepsilon_{k+1}/\varepsilon_k$. On the other hand, according to the mean value theorem for derivatives,

$$(g-z)/(x-z) = (g-g(z))/(x-z) = g'(x_i), x_i \in (x,z).$$

(Note that this does not necessarily mean $g'(x_i) \in (x,z)!$)

In line with (3), the set of requirements for n_K to exceed 1, is $g_K^{(i)}(z) = 0$, $i = 1, 2, ..., n_K - 1$. It has been previously shown [2-4] that an equivalent set of end-point conditions is

$$m^{(i-1)}(z) = g^{(i)}(z)/i, \quad i = 1, 2, \dots, n_K - 1, \quad m^{(0)}(z) = m(z) = g'(z).$$
 (4)

There is plenty room to tune m subject to (4).

Remark 2. If m = g'(z), then m(z) = g'(z) and so $n_K = 2$.

Remark 3. If m = g', then m'(z) = g''(z), m''(z) = g'''(z), and so on. In the light of (4), $n_K = 2$ only because $m'(z) \neq g''(z)/2$ unless g''(z) = 0. The application is equivalent [2] in this case to utilising Newton's method (g_N) solving a secondary function

$$g_N = x - (g - x)/(g' - 1) = (g - mx)/(1 - m), \quad m = g'.$$

Remark 4. If m = (g' + g'(z))/2, then m(z) = g'(z), m'(z) = g''(z)/2, m''(z) = g'''(z)/2, and so on. As a result, $n_K = 3$ since $m''(z) \neq g'''(z)/3$ unless g'''(z) = 0.

Remark 5. Let

$$m = wg' + (1 - w)g'(z) = g'(z) + w(g' - g'(z)),$$
(5)

Download English Version:

https://daneshyari.com/en/article/4629272

Download Persian Version:

https://daneshyari.com/article/4629272

Daneshyari.com