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a b s t r a c t

Iterative solution of a nonlinear equation f(x) = 0 usually means a repetitive scheme to
locate a fixed point of a related equation x = g(x). Koçak’s acceleration method smoothly
gears up iterations with the aid of a superior secondary solver gK = x + G(x)(g(x) � x) =
(g(x) �m(x)x)/(1 �m(x)) where G(x) = 1/(1 �m(x)) is a gain and m(x) = 1 � 1/G(x) is a
straight line slope. The accelerator shows that a previously published article [A. Biazar, A.
Amirtemoori, An improvement to the fixed point iterative method, AMC 182 (2006) 567–
571] unwittingly exaggerated the convergence order of the solver it presented. This solver
boils down to an indirect application of Newton’s method solving g(x) � x = 0 which means
that it is of second order. Hence, their claim that it ‘‘increases the order of convergence as
much as desired’’ is false! The scheme wastes higher derivatives.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

A nonlinear equation

x ¼ gðxÞ ð1Þ

can be solved by a repetitive scheme xk+1 = g(xk) where k is the iteration count. If z satisfies (1), then z is called a fixed-point of
g. Let ek = xk � z. If there exist a real number n and nonzero constant c such that

lim
k!1
ðjekþ1j=jekjnÞ;

then n and c are respectively called the convergence order and the asymptotic error constant. According to Traub [5], if n is
integral, then

c ¼ lim
k!1

ekþ1=en
k

� �
¼ gðnÞðzÞ=n!

If n = 1, then g0(z) – 0. An integral convergence order n > 1 means that

g0ðzÞ ¼ g00ðzÞ ¼ � � � ¼ gðn�1ÞðzÞ ¼ 0; gðnÞðzÞ – 0: ð2Þ

ek+1 is proportional to en
k in the vicinity of z. Thus, nth order solvers are a subset of (n � 1)th order solvers. Past this point, a

function mentioned without an argument implies that the latter is x. Note also that a subscript starting with a capital letter is
assigned to a solver g, convergence order n, and asymptotic error constant c to indicate the person to whom g is attributed.
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2. Koçak’s accelerator

This method [2–4] accelerates a given g by generating and solving a secondary solver gK through the fixed-point preserv-
ing transformation

gK ¼ xþ Gðg � xÞ ¼ ðg �mxÞ=ð1�mÞ; G ¼ 1=ð1�mÞ; m ¼ 1� 1=G; ð3Þ

where G is a gain and m is a straight line slope. Thus, gK is both partial substitution (gps) and piecewise linearisation (gpl) that
is gK � gps � gpl. (A straight line of slope m joins (x,g) to (gpl,gpl).) The second version of Koçak’s accelerator [3,4] has three
cases:

(a) If n = 1, then nK ¼ 3; cK ¼ g000K ðzÞ=3!, and g000K ðzÞ ¼ �0:5g000ðzÞ=ð1� g0ðzÞÞ.
(b) If n = 2, then nK = 3, cK ¼ g000K ðzÞ=3!, and g000K ðzÞ ¼ �0:5g000ðzÞ.
(c) If n > 2, then nK = n + 1, cK ¼ gðnþ1Þ

K ðzÞ=ðnþ 1Þ!, and gðnþ1Þ
K ðzÞ ¼ �gðnþ1ÞðzÞ=n.

Remark 1. The ‘ideal’ solver is gid = z which needs just one trial from any starting point. Albeit, z is unknown until the end! gid

can be harnessed in post priori analysis, comparative studies, and troubleshooting. Regardless of the multiplicity of z [2], the
ideal slope is mid = (gk � z)/(xk � z) = ek+1/ek. On the other hand, according to the mean value theorem for derivatives,

ðg � zÞ=ðx� zÞ ¼ ðg � gðzÞÞ=ðx� zÞ ¼ g0ðxiÞ; xi 2 ðx; zÞ:

(Note that this does not necessarily mean g0(xi) 2 (x,z)!)
In line with (3), the set of requirements for nK to exceed 1, is gðiÞK ðzÞ ¼ 0; i ¼ 1;2; . . . ;nK � 1. It has been previously shown

[2–4] that an equivalent set of end-point conditions is
mði�1ÞðzÞ ¼ gðiÞðzÞ=i; i ¼ 1;2; . . . ;nK � 1; mð0ÞðzÞ ¼ mðzÞ ¼ g0ðzÞ: ð4Þ

There is plenty room to tune m subject to (4).

Remark 2. If m = g0(z), then m(z) = g0(z) and so nK = 2.

Remark 3. If m = g0, then m0(z) = g00(z), m00(z) = g000(z), and so on. In the light of (4), nK = 2 only because m0(z) – g00(z)/2 unless
g00(z) = 0. The application is equivalent [2] in this case to utilising Newton’s method (gN) solving a secondary function
g � x = 0. Indeed,

gN ¼ x� ðg � xÞ=ðg0 � 1Þ ¼ ðg �mxÞ=ð1�mÞ; m ¼ g0:

Remark 4. If m = (g0 + g0(z))/2, then m(z) = g0(z), m0(z) = g00(z)/2, m00(z) = g000(z)/2, and so on. As a result, nK = 3 since
m00(z) – g000(z)/3 unless g000(z) = 0.
Remark 5. Let

m ¼ wg0 þ ð1�wÞg0ðzÞ ¼ g0ðzÞ þwðg0 � g0ðzÞÞ; ð5Þ

Nomenclature

c asymptotic error constant
cK asymptotic error constant of Koçak’s solver
f nonlinear function to be solved
g nonlinear solver
gid ideal solver, gid = z
gpl piecewise linearisation
gps partial substitution
gK Koçak’s solver (accelerator)
gN Newton’s second-order solver
G partial substitution gain
k iteration counter
m straight line slope
mid ideal linearisation slope
n convergence order
nK convergence order of Koçak’s solver
x independent variable
w weight (see Eq. (5))
wid limit for w at z (determined by n)
z fixed-point
ek error at the kth iteration, ek = xk � z
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