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This paper presents a new release of the DRUtES computer program, a finite element
numerical solver in one and two dimensions of flow and contaminant transport in a dual
porosity variably saturated porous medium.

The main part of this paper evaluates the capillary barrier based structure on the Richard
– Litoměřice nuclear waste facility in the Czech Republic. The barrier structure is evaluated
for various cases under normal regime flow conditions and under emergency conditions
caused by intense infiltration. The capillary barrier is based on the unsaturated hydraulic
properties of gravel. A failure of the barrier function due to saturation is successfully sim-
ulated, and is presented here.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The problem of predicting fluid movement in an unsaturated/saturated zone is important in many fields, ranging from
agriculture, via hydrology to technical applications of dangerous waste disposal in deep rock formations.

The mathematical model of unsaturated flow was originally published by Richards [1]. Together with the convection–dis-
persion–reaction equation a full contaminant transport model is formed.

The Richards equation problem has undergone various investigations and numerical treatments. Its finite element solu-
tion was originally published by Neuman in 1970 for several engineering applications, e.g. dam seepage modeling, see [2,3].
The existence and the uniqueness of its solution was discovered 10 years later, by Alt and Luckhaus [4]. A fundamental work
analyzing a mass conservation numerical method for the Richards equation was published in 1990 by Celia et al. [5]. A new
technique for adaptive time discretization was recently published by Kuráž et al. [6].

A new version of the DRUtES [7] computer code, a finite element numerical solver of contaminant transport in a dual
porosity variably saturated porous medium, was recently released by Kuráž. This code was already presented in [6]. Com-
pared to the previous release, the current version supports the two dimensional problem of variably saturated flow and sol-
uble contaminant transport. The code is written in F-language – a subset of Fortran programming language, including the
recent Fortran 2008 standard – coarrays (parallel computing support).

The aim of this paper is to present the application of DRUtES to a real technical problem – an evaluation of an engineering
barrier on the Richard – Litoměřice nuclear waste repository. The barrier is evaluated for two distinct cases – under a normal
flow regime (pseudo-steady-state flow conditions) – for a simulation time of 200 years, and under intense infiltration into an
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initially dry medium – for a simulation time of 200 days. The former case is a simulation of the barrier efficiency in a long time
scale, and the latter case is a simulation of a certain emergency state, when there is sudden and intense infiltration into an ini-
tially dry repository barrier. Based on the material properties of the barrier, the protection is efficient only for an unsaturated
state, and thus infiltration, as considered in the second case, finally caused the barrier function to collapse. A simple matrix bal-
ancing method is presented here, and its application offers a dramatic improvement of conditionality for all evaluated cases. A
positive repository protection effect is proven, and the code successfully simulates the failure of the capillary barrier effect.

Earlier models used for the safety assessment of the site are summarized in the most recent report by Baloun et al. [8]
from 2002. As the barrier design was proposed after the release of the report, the barrier effect was not considered. The Ba-
loun report also assumed the dual permeability concept, but the fast medium properties considered here originate from a
new and original mathematical model of fractures analyzed by Kuráž et al. [6], and thus a new and improved estimate of
a possible preferential flow effect is considered here.

2. Mathematical model

The problem of Darcian flow in a tectonically fractured rock medium is usually expressed by the dual permeability con-
ceptual approach. The governing equations for variably saturated Darcian flow and contaminant transport in the dual flow
regime were originally published by Gerke and van Genuchten [9].

The following section introduces the strong and weak formulation of dual permeability variably saturated flow and con-
taminant transport. A very brief description of the constitutive relations and coefficients involved in this problem is given,
however an interested reader can find more information in the references provided below.

2.1. Strong and weak formulations

The mathematical problem to be solved is the Richards equation with the dual porosity conceptual approach and the con-
vection–dispersion–reaction equation.

Let X be a bounded domain in Rn ðn ¼ 1;2Þ, with a Lipschitz boundary oX for n = 2. Let Ch
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The Richards equation in the dual regime was presumed by Gerke and van Genuchten [9] as
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the subscripts f and m denote the subsystem of fractures (macropores) and matrix blocks (micropores), h is the capillary
pressure head function [L], K(h) is the unsaturated hydraulic conductivity [L T�1], C(h) is the water retention capacity
[L�1], usually defined as CðhÞ ¼ dh

dhþ
hðhÞ
hS

Ss, where h(h) is the water content function [–], Ss is the specific aquifer storage
[L�1], hS is the saturated water content [–], and aw is the first order mass transfer coefficient [L�1 T�1] presumed as

aw ¼
b

a2
DP

Kacw; ð2Þ

where b is the dimensionless geometry coefficient, aDP is the characteristic half width [L] of the matrix block, Ka is the effec-
tive hydraulic conductivity [L T�1] of the matrix at or near the fracture/matrix interface, and cw is the dimensionless scaling
factor. Constitutive relation for function h(h) was supplied by van Genuchten’s law [10], and for the K(h) function it was sup-
plied by Mualem’s law [11], see Fig. 2 for a plot of these functions.

The Darcian flux (a convective term required by the transport equation) is obtained from the Darcy–Buckingham law.

qm ¼ �KmðhmÞðrhm þrzÞ; qf ¼ �Kf ðhf Þðrhf þrzÞ; ð3Þ

where rz is a geodetic gradient, if positive upwards, then in R1 rz = 1, and in R2 rz ¼ 0
1

� �
.

The initial conditions are stated as
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and the boundary conditions
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