
Microprocessors and Microsystems 43 (2016) 14–25 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Accurate energy modeling for many-core static schedules with 

streaming applications 

Simon Holmbacka 

a , ∗, Jörg Keller b , Patrick Eitschberger b , Johan Lilius a 

a Faculty of Science and Engineering, ̊Abo Akademi University, Turku, Finland 
b Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Hagen, Germany 

a r t i c l e i n f o 

Article history: 

Received 29 June 2015 

Revised 8 November 2015 

Accepted 13 January 2016 

Available online 6 February 2016 

Keywords: 

Power management 

Many-core systems 

Power model 

Static schedule 

a b s t r a c t 

Many-core systems provide a great performance potential with the massively parallel hardware structure. 

Yet, these systems are facing increasing challenges such as high operating temperatures, high electrical 

bills, unpleasant noise levels due to active cooling and high battery drainage in mobile devices; factors 

caused directly by poor energy efficiency. Furthermore by pushing the power beyond the limits of the 

power envelope, parts of the chip cannot be used simultaneously – a phenomenon referred to as “dark 

silicon”. Power management is therefore needed to distribute the resources to the applications on de- 

mand. Traditional power management systems have usually been agnostic to the underlying hardware, 

and voltage and frequency control is mostly driven by the workload. Static schedules, on the other hand, 

can be a preferable alternative for applications with timing requirements and predictable behavior since 

the processing resources can be more precisely allocated for the given workload. In order to efficiently 

implement power management in such systems, an accurate model is important in order to make the 

appropriate power management decisions at the right time. For making correct decisions, practical issues 

such as latency for controlling the power saving techniques should be considered when deriving the sys- 

tem model, especially for fine timing granularity. In this paper we present an accurate energy model for 

many-core systems which includes switching latency of modern power saving techniques. The model is 

used when calculating an optimal static schedule for many-core task execution on systems with dynamic 

frequency levels and sleep state mechanisms. We derive the model parameters for an embedded proces- 

sor with the help of benchmarks, and we validate the model on real hardware with synthetic applications 

that model streaming applications. We demonstrate that the model accurately forecasts the behavior on 

an ARM multicore platform, and we also demonstrate that the model is not significantly influenced by 

variances in common type workloads. 

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 

1. Introduction 

Computer systems often face a trade-off decision between per- 

formance and power dissipation. High power dissipation and fast 

execution usually lead to high energy consumption in modern 

many-core systems [12,13] . Execution speed is usually optimized 

by the programmer and compiler while minimizing energy is often 

left to the operating system which employs Dynamic Voltage and 

Frequency Scaling (DVFS) and Dynamic Power Management (DPM) 

using sleep states. However, an operating system with a dynamic 

scheduler has no knowledge about the application, its behavior 

and its timeline. In practice, the power management for dynamic 

∗ Corresponding author. Tel.: +358 505310467. 

E-mail addresses: sholmbac@abo.fi, simon.holmbacka@abo.fi (S. Holmbacka), 

jorg.keller@fernuni-hagen.de (J. Keller), patrick.eitschberger@fernuni-hagen.de 

(P. Eitschberger), johan.lilius@abo.fi (J. Lilius). 

schedules is performed with respect only to the workload level, 

which does not describe performance requirements. This means 

that the application is normally executed faster than what is ac- 

tually required, and energy is being wasted because of the unnec- 

essarily high power dissipation. 

For applications consisting of a set of tasks with a predictable 

behavior and a known execution deadline, a schedule with the 

information when to execute which task at which speed can be 

devised at compile time (i.e. a static schedule). With hints from 

the application, the power management techniques can more pre- 

cisely scale the hardware according to the software performance 

demands, and energy is minimized by eliminating unnecessary re- 

source allocation. However, Power management is a practical inter- 

play between software algorithms and physical hardware actions. 

This means that accessing power management techniques in gen- 

eral purpose operating systems introduces practical shortcomings 

such as access latency. Two separate mechanisms – DVFS and DPM 

http://dx.doi.org/10.1016/j.micpro.2016.01.008 

0141-9331/Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.micpro.2016.01.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.01.008&domain=pdf
mailto:sholmbac@abo.fi
mailto:simon.holmbacka@abo.fi
mailto:jorg.keller@fernuni-hagen.de
mailto:patrick.eitschberger@fernuni-hagen.de
mailto:johan.lilius@abo.fi
http://dx.doi.org/10.1016/j.micpro.2016.01.008


S. Holmbacka et al. / Microprocessors and Microsystems 43 (2016) 14–25 15 

– are currently used for minimizing the CPU power dissipation. 

As DVFS regulates voltage and frequency to minimize the dynamic 

power, DPM is used to switch off parts of the CPU to minimize 

the rapidly growing static power [16] . The techniques are therefore 

complementing each other and a minimal energy consumption is 

achieved by proper coordination of both techniques [1,24] . While 

both mechanisms have been evaluated in the literature [9,17] , no 

work has been done to determine the practical latency of both 

DVFS and DPM on a single platform, and its impact on power man- 

agement. 

In this work we present an accurate energy model for static 

schedules in many-core systems using DVFS and DPM. The model 

is based on measurements of a single synthetic application on real 

hardware to conform with complete platform details and a realis- 

tic view of the static and dynamic power balance. In practical real- 

world systems, there is always a certain latency for utilizing DVFS 

and DPM both due to hardware and software implementations (in 

this paper Linux). Instead of focusing on eliminating or minimizing 

this latency, we chose to acknowledge this short coming in current 

computing systems, and learn how to integrate this detail in the 

system model. We account for the latency of using DVFS and DPM 

on a statically scheduled many-core system by including the tim- 

ings in the decision making process of power management tech- 

niques. We validate the results by implementing a framework for 

synthetic workloads on real hardware (ARM multicore) running an 

unmodified Linux OS. The evaluation demonstrates that the model 

is able to accurately forecast the energy consumption of a selected 

static schedule under different workload configurations and differ- 

ent deadlines. We also demonstrate by experiments that the fore- 

casts of the model remain stable if the benchmarks used to gener- 

ate the model and the applications scheduled by the model differ 

in their characteristics. 

The repeated execution of our synthetic applications (set of 

tasks with predictable workload and common deadline) models 

streaming applications with throughput requirements, which form 

a large class of applications for many-core processors. Considering 

several executions (rounds) together can allow further optimiza- 

tions, which we include into our model. While our experiments 

only address a single platform, we note that the approach can be 

applied to other hardware platforms without re-engineering the 

core algorithm, as long as the platforms allow measurement for 

creating the model parameters. 

The remainder of this article is structured as follows. In 

Section 2 , we discuss related work. In Section 3 , we investigate the 

latency and energy overhead of DVFS and DPM mechanisms as ex- 

perienced by applications running on typical platform (ARM mul- 

ticore) with a typical operating system (Linux). From these mea- 

surements we derive an energy model for task-based applications 

in Section 4 . In Section 5 , we evaluate the forecasting capabilities 

of this energy model with respect to execution on a real hardware. 

We extend the model towards streaming applications in Section 6 , 

and present additional energy optimizations possible by schedul- 

ing several rounds of computation together. In Section 7 , we give 

conclusions and an outlook onto future work. 

2. Related work 

DVFS and its efficiency for multi-cores has been studied in the 

past [9,17] , but mostly the focus has been put directly on measur- 

ing the overhead of physically switching hardware states [17,27] 

including PLL locking, voltage level switching etc. Mazouz et al. 

present in [25] a frequency transition latency estimator called FTa- 

LaT, which chooses a frequency depending on the current phase 

of a program. They argue that programs mostly have either CPU 

intensive phases in which the CPU is running on a high clock fre- 

quency or memory intensive phases in which the clock frequency 

can be decreased to save power. For very small memory intensive 

regions, it is favorable to ignore the frequency scaling because the 

switching delay would be higher than the length of the memory 

phase. They evaluate their estimator with a few micro-benchmarks 

(based on OpenMP) on different Intel machines, and they show 

that the transition latency varies between 20 and 70 microseconds 

depending on the machine. As the total switching latency is the 

sum of both hardware and software mechanisms, we study in this 

paper the practical aspects of switching latency in both DVFS and 

DPM for off-the-shelf operating systems running on real hardware. 

Influences of user space interaction and the kernel threads which 

control the power saving mechanisms are studied, and related to 

the effects on the energy consumption. 

The paper of Schöne et al. [29] describes the implementation of 

the low-power states in current x86 processors. The wake-up la- 

tencies of various low-power states are measured and the results 

are compared with the vendor’s specifications that are exposed to 

the operating system. The results show fluctuations e.g. depending 

on the location of the callee processor. Their work complements 

ours, but rather than using the x86 architecture we focus on mo- 

bile ARM processors with less support for hardware power man- 

agement. 

Algorithms for minimizing energy based on power and execu- 

tion time have been presented in previous work such as [3,9,10] . 

Cho et al. define an analytical algorithm for expressing dynamic 

and static power in a multi-core system with multiple frequency 

levels. The minimum-energy-operation point is then calculated by 

determining the first order derivative of the system energy with 

respect to time. The mathematical expression defined in [3] ex- 

ploits the task parallelism in the system to determine the amount 

of processing elements required, and hence influencing the static 

power dissipation. In our work, we define the system power model 

based on experiments on real hardware rather than analytical ex- 

pressions in order to tailor the model closer to real-world devices. 

The work in [10] uses similar reasoning to determine an energy 

efficient frequency based on the timing guarantees and available re- 

sources for real-time tasks. Their mechanism was able to map a 

certain number of replica tasks in a multi-core system in order 

to parallelize the work to an optimal number of cores running on 

an optimal frequency. Similar to [3] , the authors used a bottom- 

up model to define the power as an analytical expression without 

taking temperature into account. 

The work in [20] defines an algorithm for calculating the min- 

imum energy consumption for a microprocessor when taking both 

dynamic power and static power into account in a system with 

DVFS and DPM. The authors define an analytical expression for the 

power dissipation and divides the workload for a given timeline 

into active time slots and sleep slots, and calculates the total en- 

ergy over a given time with a given power dissipation for each slot. 

In [21] an Energy-Aware Modeling and Optimization Methodol- 

ogy (E-AMOM) framework is presented. It is used to develop mod- 

els of runtime and power consumption with the help of perfor- 

mance counters. These models are used to reduce the energy by 

optimizing the execution time and power consumption with focus 

on HPC systems and scientific applications. Our approach follows 

the same principle, but instead we use a top-down power model 

based on real experiments rather than analytical expressions. We 

also account for the latency of both DVFS and DPM which, as ex- 

plained, becomes important when the time scale is shrinking. 

Gerards and Kuper [6] describe various possibilities and tech- 

niques to reduce the energy consumption of a device (e.g. a 

processor core) under real-time constraints. They describe the 

problems and present optimal solutions for DPM-based and also 

combined DPM and DVFS approaches when both the energy and 

time for scaling the frequency and shutdown or wakeup a core are 

considered. The theoretical part is close to ours but they only focus 



Download English Version:

https://daneshyari.com/en/article/462936

Download Persian Version:

https://daneshyari.com/article/462936

Daneshyari.com

https://daneshyari.com/en/article/462936
https://daneshyari.com/article/462936
https://daneshyari.com

