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a b s t r a c t

The aim of this paper is to study finite element methods and their convergence for hyper-
bolic interface problems. Both semidiscrete and fully discrete schemes are analyzed. Opti-
mal a priori error estimates in the L2 and H1 norms are derived for a finite element
discretization where interface triangles are assumed to be curved triangles instead of
straight triangles. The interfaces and boundaries of the domains are assumed to be smooth
for our purpose.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider linear hyperbolic interface problems of the form

utt �r � ðaðxÞruÞ þ a0ðxÞu ¼ f ðx; tÞ in X� ð0; T� ð1:1Þ

with initial and boundary conditions

uðx;0Þ ¼ u0; utðx; 0Þ ¼ v0 in X; uðx; tÞ ¼ 0 on @X� ð0; T� ð1:2Þ

and interface conditions

½u� ¼ 0; a
@u
@n

� �
¼ gðx; tÞ along C; ð1:3Þ

where X is a bounded domain in R2 with smooth boundary @X and utt ¼ @2u
@t2 . Here, X1 � X is an open domain with C2 smooth

boundary C ¼ @X1 and X2 ¼ X nX1. The symbol [v] is a jump of a quantity v across the interface C and n denotes the unit
outward normal to the boundary @X1. The coefficient matrix aðxÞ is assumed to be discontinuous along C but piecewise
smooth in each subdomain X1 and X2, i.e.,

aðxÞ ¼ alðxÞ for x 2 Xl; l ¼ 1;2:

Further, the matrix aðxÞ is assumed to be symmetric, uniformly positive definite in X and a0ðxÞ > 0. Here for each l; alðxÞ is
a uniformly positive definite matrix. The source function f and initial functions u0;v0 are assumed to be sufficiently smooth.

Interface problems are often referred as differential equations with discontinuous coefficients. Hyperbolic Eqs. (1.1) with
discontinuous coefficients is often used as a simple model in seismology or ocean acoustics, in which the ocean bottom is de-
scribed as a multilayered fluid medium. In this case, the coefficient represents the velocity of sound which is discontinuous
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between sediment layers and u is the acoustic velocity [1]. In electromagnetism, the Eq. (1.1) corresponds to a problem in
which the material occupying the interior is a dielectric rather than a metal (cf. [3]).

Several numerical schemes based on finite difference method have been designed for the approximate solutions of the
hyperbolic interface problems. A general introduction on the numerical treatment for hyperbolic interface problems by
means of finite difference method can be found in Le Veque’s Book [16]. Three numerical schemes, namely Wendroff,
TVD and WENO have been discussed in [16]. These schemes use values of the sound speed on discrete points or averaged
values on grid cells. As a consequence, they do not describe accurately the position and the shape of interfaces cutting grid
cells. Furthermore, due to the low regularity of the true solution the method leads to the loss in accuracy near the interface. It
is then a new approach called explicit jump immersed interface method was introduced in [22]. These numerical methods
ensure a given accuracy at grid points near interface, but they are difficult to implement with higher order schemes. To over-
come this difficulty an explicit simplified interface method was introduced by Piraux et al. in [18] for one dimensional acous-
tic velocity and acoustic pressure.

The objective of this paper is to derive optimal error estimates in H1 and L2 norms for hyperbolic interface problems.
Although a good number of articles is devoted to the finite element approximation for elliptic and parabolic interface prob-
lems [6–8,10,12], there is hardly any literature concerning the convergence of finite element solutions to the true solutions of
hyperbolic interface problems. To derive OðhmÞ ðm P 0Þ error estimates for non-interface hyperbolic problems, the finite ele-
ment analysis, in general, require u 2 L2ð0; T; Hmþ1ðXÞÞ \ H1ð0; T; Hm�1ðXÞÞ \ H2ð0; T; Hm�2ðXÞÞ, see [5,13,15,19]. Because of
the low global regularity of the true solution of interface problem it has been challengeable to obtain higher order conver-
gence by means of the standard finite element error analysis technique to the interface problems (cf. [4,10,20]). In this paper,
we are able to prove optimal order pointwise-in-time error estimates in L2 and H1 norms for the interface problem (1.1)–
(1.3) if we allow interface triangles to be curved triangles. The finite element discretization is made in such a way that
the grid line is isoparametrically fitted to the actual interface. Both semidiscrete and fully discrete schemes are analyzed
and optimal rates of convergence are established. The key to the present analysis is the introduction of elliptic projections
in each individual subdomain and the information is then transferred between the subdomains via trace.

The paper is organized as follows. In Section 2, we introduce some standard notations and recall some basic results from
the literature. In Section 3, we define auxiliary projections and discuss their approximation properties. Section 4 is devoted
to the error analysis for the semidiscrete finite element approximation. Finally, error estimates for the fully discrete scheme
are derived in Section 5.

2. Notations and preliminaries

In this section, we shall introduce the standard notation for Sobolev spaces and norms to be used in this paper.
For m P 0 and real p with 1 6 p 61, we use Wm;pðXÞ to denote Sobolev space of order m with norm k:km and in particular

for p ¼ 2, we write Wm;2 ¼ Hm. Hm
0 ðXÞ is a closed subspace of HmðXÞ, which is also closure of C10 ðXÞ (the set of all C1 functions

with compact support) with respect to the norm of HmðXÞ. For a fractional number s, Sobolev space Hs is defined in Adams
[2]. We will be using the following equivalent definition for H1-norm

kwkH1ðXÞ � kwkH1ðX1Þ þ kwkH1ðX2Þ 8w 2 H1ðXÞ:

We shall also need the following spaces:

X ¼ H1ðXÞ \ H2ðX1Þ \ H2ðX2Þ and Y ¼ L2ðXÞ \ H1ðX1Þ \ H1ðX2Þ

equipped with the norms

kvkX ¼ kvkH1ðXÞ þ kvkH2ðX1Þ þ kvkH2ðX2Þ

and

kvkY ¼ kvkL2ðXÞ þ kvkH1ðX1Þ þ kvkH1ðX2Þ;

respectively.
For a given Banach space B, we define, for m ¼ 0;1,

Hmð0; T;BÞ ¼ uðtÞ 2 B for a:e: t 2 ð0; TÞ and
Xm

j¼0

Z T

0

@juðtÞ
@tj

�����
�����

2

B

dt <1

8<:
9=;

equipped with the norm

kukHmð0;T;BÞ ¼
Xm

j¼0

Z T

0

@juðtÞ
@tj

�����
�����

2

B

dt

0@ 1A1
2

:

We write L2ð0; T;BÞ ¼ H0ð0; T;BÞ.
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