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In this paper, we give a sharp eigenvalue bound for the positive stable block triangular pre-
conditioned matrix presented in a recent paper by Cao [Z.-H. Cao, Positive stable block tri-
angular preconditioners for symmetric saddle point problems, Appl. Numer. Math. 57
(2007) 899–910]. The intervals containing these eigenvalues of the preconditioned matrix
remove the origin, which is benefit for further study. Numerical experiments of a model
Stokes problem are presented to show the estimate and the effectiveness of the positive
stable block triangular preconditioners.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following generalized saddle point linear system
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; or Au ¼ b; ð1:1Þ

where A 2 Rn�n is symmetric and positive definite, B 2 Rm�n has full rank, C 2 Rm�m is symmetric and positive semi-definite,
and m 6 n. Problem (1.1) arises in a variety of problems, such as constrained quadratic programming, constrained least
squares problems, mixed finite element approximations of elliptic PDEs, computational fluid dynamics, and so on. We refer
the reader to [9] for a general discussion.

When the matrix blocks A 2 Rn�n; B 2 Rm�n and C 2 Rm�n are large and sparse, iterative methods become more attractive
than direct methods for solving the saddle point problems (1.1). Many iterative methods are proposed to solve the saddle
point problems (1.1), such as generalized successive overrelaxation (GSOR) method [7], parameterized inexact Uzawa meth-
ods [8,10], local Hermitian and skew-Hermitian splitting method [13] and so on. A very good survey on useful iterative meth-
ods was presented in [9]. In particular, Krylov subspace methods might be used. It is often advantageous to use a
preconditioner with such iterative methods. The preconditioner should reduce the number of iterations required for conver-
gence but not significantly increase the amount of computation required at each iteration. Preconditioning for system (1.1)
has been studied in many papers, such as block triangular preconditioners [1,2,12,14,19,21], constraint preconditioners
[3,15], HSS preconditioners [4,5], matrix splitting preconditioners [6,11,16,17,20] and so on.

Recently, Cao [12] studied the application of the block triangular preconditioner
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where bA and bC are symmetric and positive definite. Cao has showed that the preconditioned matrix AP�1 is indefinite with
all eigenvalues being real and the estimate for the interval containing these real eigenvalues has been studied. However, the
interval containing these real eigenvalues is somewhat rough. It is necessary and very important to estimate that eigenvalues
of preconditioned matrix are far from the origin for the numerical stability and convergence. This is main motivation of our
work in this note. In fact, once given a preconditioner, we should ensure that the eigenvalues are away from the origin [19].
In this paper, we give a better estimate on the bounds for the eigenvalues of the preconditioned matrix AP�1 under the fol-
lowing condition

kbA�1Ak2 6 1; ð1:2Þ

which is a natural assumption. In this case, the intervals containing these real eigenvalues given in this paper remove the
origin. It is benefit for further study, such as the choices of the preconditioning matrices bA and bC , the parameterized case
[14] and so on.

The reminder of the paper is organized as follows. In Section 2, the positive stable block triangular preconditioner is re-
called and a sharper bound for the eigenvalues of the preconditioned matrix than that presented in [12] is analyzed. In Sec-
tion 3, numerical experiment of a model Stokes problem is presented to show the estimate and the effectiveness of the
positive stable block triangular preconditioner P.

Throughout this paper, A > B means that A� B is symmetric and positive definite. Let rðAÞ denote the spectrum of A. I
represents the (appropriately dimensioned) identity matrix.

2. Eigenvalue analysis

We consider the eigenvalue problem

AP�1û ¼ kû: ð2:1Þ

Consider additionally the block diagonal matrix

P0 ¼
bA 0
0 bC

" #
:

Then we can rewrite the eigenvalue problem (2.1) as

C~u ¼
eA ðI � eAÞeBTeB �ðeBeBT þ eCÞ

" #
~u ¼ k~u; ð2:2Þ
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It has been studied in [12] that all the eigenvalues of the preconditioned matrix AP�1 are real. We now study the bounds

for the eigenvalues of AP�1 or, equivalently, the bounds for the eigenvalues of C.
Assume first that ~A has the eigenvalue 1 and X0 is an orthogonal eigenvector basis, i.e., ~AX0 ¼ X0; XT

0X0 ¼ I. Let ~A ¼ ½X0;X�
diagðI;KÞ½X0;X�T be the eigenvalue decomposition of eA with ½X0;X� being orthogonal and K being diagonal such that its diag-
onal elements are less than one. Then
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; ð2:3Þ

where

C1 ¼
K ðI �KÞXTeBTeBX �ðeBeBT þ eCÞ

" #
; C2 ¼

0eBX0

� �
:

(2.3) implies that C has the eigenvalue 1 (may be multiple).
Without loss of generality we now assume that 1 R rð~AÞ, and XT eAX ¼ K, where X is orthogonal and K is a diagonal matrix.

Under the assumption kbA�1Ak2 6 1 (cf. (1.2)) we know that K < I.
Consider additionally the block diagonal matrix

Y ¼ ðI �KÞ�
1
2XT

I

" #
and let

H � YCY�1 ¼ K Q T

Q �S

" #
; ð2:4Þ
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