
Microprocessors and Microsystems 43 (2016) 95–103 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Parallel programming model for the Epiphany many-core coprocessor 

using threaded MPI 

James A. Ross a , ∗, David A. Richie 

b , Song J. Park 

a , Dale R. Shires a 

a U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States 
b Brown Deer Technology, Forest Hill, MD, United States 

a r t i c l e i n f o 

Article history: 

Received 7 July 2015 

Revised 4 February 2016 

Accepted 5 February 2016 

Available online 23 February 2016 

Keywords: 

2D RISC array 

MPI 

NoC 

Many-core 

Adapteva Epiphany 

Energy efficiency 

a b s t r a c t 

The Adapteva Epiphany many-core architecture comprises a 2D tiled mesh Network-on-Chip (NoC) of 

low-power RISC cores with minimal uncore functionality. It offers high computational energy efficiency 

for both integer and floating point calculations as well as parallel scalability. Yet despite the interest- 

ing architectural features, a compelling programming model has not been presented to date. This paper 

demonstrates an efficient parallel programming model for the Epiphany architecture based on the Mes- 

sage Passing Interface (MPI) standard. Using MPI exploits the similarities between the Epiphany archi- 

tecture and a conventional parallel distributed cluster of serial cores. Our approach enables MPI codes 

to execute on the RISC array processor with little modification and achieve high performance. We re- 

port benchmark results for the threaded MPI implementation of four algorithms (dense matrix–matrix 

multiplication, N -body particle interaction, five-point 2D stencil update, and 2D FFT) and highlight the 

importance of fast inter-core communication for the architecture. 

Published by Elsevier B.V. 

1. Introduction 

The emergence of a wide range of parallel processor architec- 

tures continues to present the challenge of identifying an effec- 

tive programming model that provides access to the capabilities of 

the architecture while simultaneously providing the programmer 

with familiar, if not standardized, semantics and syntax. The pro- 

grammer is frequently left with the choice of using a non-standard 

programming model specific to the architecture or a standardized 

programming model that yields poor control and performance. 

The Adapteva Epiphany MIMD architecture is a scalable 2D ar- 

ray of RISC cores with minimal uncore functionality connected 

with a fast 2D mesh Network-on-Chip (NoC) [1] . Processors based 

on this architecture exhibit good energy efficiency and scalabil- 

ity via the 2D mesh network, but require a suitable programming 

model to fully exploit the architecture. The 16-core Epiphany III [2] 

coprocessor has been integrated into the Parallella minicomputer 

platform [3] where the RISC array is supported by a dual-core 

ARM CPU and asymmetric shared-memory access to off-chip global 

memory. Fig. 1 shows the high-level architectural features of the 

coprocessor. Each of the 16 Epiphany III mesh nodes contains 32KB 

∗ Corresponding author. Tel.: +1 4102789556. 

E-mail addresses: james.a.ross176.civ@mail.mil , james.a.ross@gmail.com 

(J.A. Ross), drichie@browndeertechnology.com (D.A. Richie),

song.j.park.civ@mail.mil (S.J. Park), dale.r.shires.civ@mail.mil (D.R. Shires). 

of shared local memory (used for both program instructions and 

data), a mesh network interface, a dual-channel DMA engine, and 

a RISC CPU core. Each RISC CPU core contains a 64-word register 

file, sequencer, interrupt handler, arithmetic logic unit, and a float- 

ing point unit. Each processor tile is very small at 0.5 mm 

2 on the 

65 nm process and 0.128 mm 

2 on the 28 nm process. Peak single- 

precision performance for the Epiphany III is 19.2 GFLOPS with 

a 600 MHz clock. Fabricated on the 65 nm process, the Epiphany 

III consumes 594 mW for an energy efficiency of 32.3 GFLOPS/W 

(Olofsson, personal communication). The 64-core Epiphany IV, fab- 

ricated on the 28 nm process, has demonstrated energy efficiency 

exceeding 50 GFLOPS/W [4] . 

The raw performance of currently available Epiphany coproces- 

sors is relatively low compared to modern high-performance CPUs 

and GPUs; however, the Epiphany architecture provides greater en- 

ergy efficiency and is designed to be highly scalable. The pub- 

lished architecture road map specifies a scale-out of the archi- 

tecture to exceed 10 0 0 cores in the near future and, shortly 

thereafter, tens of thousands of cores with an energy efficiency ap- 

proaching 1 TFLOPS/W. Within this context of a highly scalable ar- 

chitecture with high energy efficiency, we view it as a competitive 

processor technology comparable to GPUs and other coprocessors. 

While architectural energy efficiency is important, achievable 

performance with a compelling programming model is equally, if 

not more, important. Key to performance with the Epiphany ar- 

chitecture is data re-use, requiring precise control of inter-core 

http://dx.doi.org/10.1016/j.micpro.2016.02.006 

0141-9331/Published by Elsevier B.V. 

http://dx.doi.org/10.1016/j.micpro.2016.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.02.006&domain=pdf
mailto:james.a.ross176.civ@mail.mil
mailto:james.a.ross@gmail.com
mailto:drichie@browndeertechnology.com
mailto:song.j.park.civ@mail.mil
mailto:dale.r.shires.civ@mail.mil
http://dx.doi.org/10.1016/j.micpro.2016.02.006


96 J.A. Ross et al. / Microprocessors and Microsystems 43 (2016) 95–103 

Fig. 1. Adapteva Epiphany III architecture diagram. 

communication since the architecture does not provide a hardware 

cache at any level. The cores can access off-chip mapped memory 

with a significant performance penalty in both latency and band- 

width relative to accessing neighboring core memory. 

When developing parallel applications, the parallel program- 

ming model and API must match the architecture lest it becomes 

overly complicated or unable to achieve good performance. By 

leveraging the standard MPI programming model, Epiphany soft- 

ware developers inherit a multi-decadal legacy of refined soft- 

ware design and domain decomposition considerations. For the 

Epiphany architecture, an MPI programming model is a better 

choice than OpenCL, which primarily targets GPUs. MPI is also su- 

perior to OpenMP since shared memory exhibits significant NUMA 

issues. Neither OpenCL nor OpenMP provide a mechanism for ex- 

plicitly controlling inter-core data movement, which is critical to 

achieving high performance for anything but trivially parallel ap- 

plications on this processor. Further discussion of OpenCL is found 

in Section 3.3 . Other programming models such as partitioned 

global address space (PGAS) using Unified Parallel C (UPC) may 

have merit with the Epiphany architecture; however, it requires 

an extension to ANSI C and removes some explicit control from 

the programmer. The SHMEM library, which does not require com- 

piler support, is a good candidate for future development on the 

Epiphany architecture. 

In this paper, we demonstrate that threaded MPI exhibits the 

highest performance reported to date using a standard parallel API 

on the Epiphany architecture. Threaded MPI allows algorithm de- 

sign to closely follow the methods for distributed parallel pro- 

cessors, and in some cases the code can be re-used with min- 

imal modifications. Our previous demonstration of threaded MPI 

for dense matrix–matrix multiplication on the Epiphany architec- 

ture [5] has been improved by optimizing the MPI communication 

and algorithm computational performance. This paper is an exten- 

sion to the publication in [6] , where additions include a discus- 

sion of the platform roofline model, application arithmetic intensi- 

ties, the inter-core communication patterns, a detailed description 

of the critical MPI_Sendrecv_replace communication routine, ad- 

ditional analysis of application and threaded MPI communication 

performance on the platform, and more reference material. Bench- 

marks for on-chip performance demonstrate that threaded MPI can 

be broadly applied to different algorithms. The peak performance 

achieved for each benchmark compares favorably with results re- 

ported for related benchmarks on other coprocessors, including the 

Intel Xeon Phi and Teraflops Research Chip. 

2. Threaded MPI 

Threaded MPI was developed to provide an extremely 

lightweight implementation of MPI appropriate for threads exe- 

cuting within the restricted context of the Epiphany RISC cores. 

Threaded MPI enables the use of a standard parallel programming 

API to achieve high performance and platform efficiency. The MPI 

programming model is well suited to the Epiphany architecture. 

The use of MPI for programming the Epiphany architecture was 

first suggested with a simple proof-of-concept demonstration in 

2013 [7] , and it is somewhat surprising that this line of research 

is only now being more thoroughly explored on this platform. Ex- 

amining a threaded implementation of MPI for multi-core CPUs is 

not new [8,9] . However, previous investigations did not address the 

significant architecture constraints found with Epiphany and em- 

ployed a more conventional design. As a result, existing MPI imple- 

mentations provide no possibility for porting, nor do they provide 

any guide for the design of a threaded implementation targeting 

this class of architecture. 

Threaded MPI is distinguished from conventional MPI imple- 

mentations by two critical differences directly related to the ar- 

chitecture. The Epiphany device must be accessed as a coproces- 

sor and each core executes threads within a highly constrained 

set of resources. As a result, the cores are not capable of sup- 

porting a full process image or program in the conventional sense, 

and therefore the conventional MPI model of associating MPI pro- 

cesses to concurrently executing programs is also not possible. In- 

stead, coprocessor offload semantics must be used to launch con- 

current threads that will then employ conventional MPI semantics 

for inter-thread communication. 

The practical consequence is that rather than launching an MPI 

job from the command line, a host program executing on the plat- 

form CPU initiates the parallel MPI code using a functional call; 

the mpiexec command is replaced with an analogous function call, 

coprthr_mpiexec (int device, int np, void ∗ args, size_t args_sz, int 

flags). This has the advantage of localizing the parallelism to a fork- 

join model within a larger application that may otherwise execute 

on the platform CPU, and multiple coprthr_mpiexec calls may be 

made from within the same application. From the host applica- 

tion executing on the platform CPU, explicit device control and 

distributed memory management tasks must be used to coordi- 

nate execution with the Epiphany coprocessor at a higher level. 

These host routines are separate from the MPI programming model 

used to program the coprocessor itself. The only practical conse- 

quence and distinction with MPI code written for Epiphany, com- 

pared with a conventional distributed cluster, is that the main() 

routine of the MPI code must be transformed into a thread func- 

tion and employ Pthread semantics for passing in arguments. Be- 

yond this, no change in MPI syntax or semantics is required. 

The more serious challenge that directly impacts both the per- 

formance and the range of application of a threaded MPI imple- 

mentation is the significantly limited amount of local memory per 

core. A conventional MPI implementation relies upon large buffers 

for message queues tuned for the specific host and network pa- 

rameters. Here, no more than 32KB are available per core for sup- 

porting program instructions, local storage, and message buffers. 

Whereas, the cores do have access to a much larger shared mem- 

ory region in global DRAM (on the order of 32MB), the cost asso- 

ciated with accessing this global memory, as compared to the ex- 

tremely low latency of local memory, prevents the use of large MPI 

buffers in global memory. Such a design would compromise the 

known requirements for achieving good performance and therefore 

would not be efficient. 

A minimal subset of the MPI standard, shown in Table 1 , was 

implemented at the time of this work. Support was provided for 

basic initialization, the creation of Cartesian topologies, blocking 

send/receive pairs, and a combined blocking send/receive/replace 

call. These calls are sufficient for nontrivial experiments to test the 

effectiveness of the overall approach and implementation. For ex- 

ample, these routines provide the minimal set required to imple- 

ment primitive MPI send and receive tests as well as porting a 



Download English Version:

https://daneshyari.com/en/article/462942

Download Persian Version:

https://daneshyari.com/article/462942

Daneshyari.com

https://daneshyari.com/en/article/462942
https://daneshyari.com/article/462942
https://daneshyari.com

