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a b s t r a c t

Bisection (of a real interval) is a well known algorithm to compute eigenvalues of symmetric
matrices. Given an initial interval ½a; b�, convergence to an eigenvalue which has size much
smaller than a or b may be made considerably faster if one replaces the usual arithmetic
mean (of the end points of the current interval) with the geometric mean. Exploring this
idea, we have implemented geometric bisection in a Matlab code. We illustrate the effec-
tiveness of our algorithm in the context of the computation of the eigenvalues of a symmet-
ric tridiagonal matrix which has a very large condition number.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The numerical computation of eigenvalues of large symmetric matrices is a problem of major importance in many scien-
tific and engineering applications. See, for instance, [15, Chapter X], for an account of the origins of matrix eigenvalue prob-
lems. Depending upon the application, one may want the full spectrum or just a few eigenvalues (and possibly also the
corresponding eigenvectors).

In many cases, matrices exhibit eigenvalues which have different orders of magnitude, that is, with k1 and kn the eigen-
values of larger and smaller magnitude, respectively, the condition number condðAÞ ¼ jk1j=jknj is very large. The computation
of kn, which is certainly necessary in finding condðAÞ, is also required, for instance, in signal processing and estimation. Given
the covariance sequence of observed data, it has been proposed in [13] to determine the sinusoidal frequencies from the
eigenvector associated to the smallest eigenvalue of the covariance matrix, a symmetric positive definite Toeplitz matrix.

For general symmetric matrices, there is a well known method for slicing the spectrum (see, for instance, [12, p. 46]).
With K and M symmetric, let us write the triangular factorization

K � rM ¼ LrDrLT
r; ð1Þ

where Dr is diagonal and M is positive definite. Then the number of negative eigenvalues of K � rM is equal to the number of
negative diagonal entries of Dr. So, for each chosen value r, the decomposition (1) gives the number of eigenvalues which are
to the left of r and we will denote this number by countðrÞ. For general matrices of order n, this computation is a Oðn3Þ pro-
cess. The most popular use of countðrÞ is for the standard symmetric tridiagonal eigenvalue problem (that is, K is symmetric
tridiagonal and M is the identity matrix). This is so because the computation of countðrÞ requires OðnÞ floating point oper-
ations for tridiagonal matrices and these arise in a similarity transformation (usually with Householder reflections or Givens
rotations) or in the context of the Lanczos algorithm.

In the LAPACK routines SSTEBZ and DSTEBZ [2] (for single and double precision, respectively) countðrÞ is the essential tool
to compute some or all of the eigenvalues of a symmetric tridiagonal matrix, with user prescribed accuracy.

For full matrices for which the computation of countðrÞ is a Oðn2Þ process, the reduction to tridiagonal form may be
avoided. This is the case of symmetric positive definite Toeplitz matrices. For the computation of the smallest eigenvalue
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of such matrices, Cybenko and Van Loan [3] presented an algorithm which is a combination of bisection and Newton’s meth-
od for the secular equation. Others have replaced the Newton’s method by different acceleration techniques (see [10] and
references therein). In [17,11], bisection has also been used to locate not only the smallest eigenvalue but the complete
spectrum. In all the proposed methods, the most expensive part is the computation of a region in which the algorithms
monotonically converge to the desired eigenvalue. This is where our proposal plays a role.

Pascal matrices, which have important applications (see [20] and references there), are another kind of structured matri-
ces for which fast algorithms do exist. The Choleski decomposition of such matrices may be computed with only OðnlogðnÞÞ
flops [19], therefore countðrÞ is rather inexpensive in this case.

The central issue of this paper is to show the virtues of choosing the geometric mean r ¼ ða � bÞ1=2 rather than the arith-
metic mean r ¼ ðaþ bÞ=2 in sectioning the interval ½a; b� which is known to contain the target eigenvalue(s). An initial inter-
val ½a; b� containing all eigenvalues is usually computed from the union of the Gerschgorin ‘‘discs’’ (see, for instance,
Theorem 2.9 in [7]). For matrices with large condition numbers, this interval will contain eigenvalue(s) of much smaller size
than maxfjaj; jbjg.

The use of the geometric mean has been considered in [5, pp. 9–10], in the context of computing the SVD of a dense ma-
trix A with low relative error, in time growing like a low order polynomial in log2ðlog2ðcondðAÞÞ. We stress out that, as com-
pared to what has been done in [5] for geometric bisection, we do present a much more detailed analysis and original
material. Of particular interest is the fact that geometric bisection (which can be much better) is never much worst than
usual bisection. This is a strong argument in favor of using the geometric mean in codes where the arithmetic mean has been
traditionally implemented.

2. The geometric mean

Suppose that 0 < a0 < b0, with a0 and b0 of very different orders of magnitude. If we are looking for an eigenvalue k that
lies between a0 and b0 but is much closer to a0, instead of the usual arithmetic mean (AM)

mj ¼
aj�1 þ bj�1

2
; j ¼ 1;2; . . . ; ð2Þ

it is much better, in each iteration, to use the geometric mean (GM)

m0j ¼ aj�1 � bj�1
� �1=2

; j ¼ 1;2; . . . ; ð3Þ

until the endpoints aj and bj have the same size. For instance, if ½a0; b0� ¼ ½2�22;220�, then (2) and (3) produce m1 ¼ 219 þ 2�23

and m01 ¼ 2�1, respectively, i.e., one single step of (3) produces an interval of much smaller size, speeding up convergence if
k < 2�1. In fact, 21 iterations with (2) are needed to produce an interval with right hand side close to m01 ¼ 2�1.

To see that the geometric mean does correspond to the arithmetic mean of the exponents of the endpoints aj�1 and bj�1

(considering such exponents as floating point numbers), write

Eðaj�1Þ ¼ log2 aj�1
� �

; Eðbj�1Þ ¼ log2 bj�1
� �

and get

m0j ¼ aj�1 � bj�1
� �1=2 ¼ 2

Eðaj�1 ÞþEðbj�1Þ
2 :

3. Getting bounds of the same magnitude

It is clear that it is more efficient to use the geometric mean rather than the arithmetic mean when the endpoints have
different sizes and the target k is much closer to the left endpoint. At first glance, one may fear that the use of (3) is a bet
whose benefit when our guess k < m0j proves to be correct is completely shaded by the increase in the number of the nec-
essary steps, relatively to the use of (2), when k is much closer to the right endpoint. The beauty of GM is that this is not so,
i.e., the gain in the best case is much bigger than the loss in the worst case. We have the following

Proposition 1. Let k 2 ½a0; b0� with 0 < 2a0 < b0 and k ¼ log2log2 b0=a0ð Þd e. Then, independently of the location of k in ½a0; b0�,
after k steps with (3) we get ½ak; bk� such that

bk

ak
< 2: ð4Þ

Proof. For each j P 1, it is either ½aj; bj� ¼ aj�1; ðaj�1 � bj�1Þ1=2
h i

or ½aj; bj� ¼ ðaj�1 � bj�1Þ1=2
; bj�1

h i
, depending upon the location

of k. In any case, we have

bj

aj
¼ bj�1

aj�1

� �1=2

: ð5Þ
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