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Point multiplication is required in every elliptic curve cryptosystem and its efficient implementation is
essential. Koblitz curves are a family of curves defined over F,» allowing notably faster computation.
We discuss implementation of point multiplication on Koblitz curves with parallel field multipliers.
We present a novel parallelization method utilizing point operation interleaving. FPGA implementations
are described showing the practical feasibility of our method. They compute point multiplications on
average in 4.9 ps, 8.1 ps, and 12.1 ps on the standardized curves NIST K-163, K-233, and K-283, respec-
tively, in an Altera Stratix II FPGA.
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1. Introduction

Koblitz [1] and Miller [2] independently suggested using elliptic
curves in public-key cryptography in 1985. Since then elliptic
curve cryptography has attained considerable amount of interest
in the cryptographic research community, and increasingly also
in the industry. The main reason for the attractiveness of elliptic
curves is that shorter keys can be used for attaining similar level
of security than in traditional public-key cryptography schemes
based on the difficulty of integer factorization or discrete loga-
rithm. For example, elliptic curve cryptography achieves approxi-
mately the same level of security with 173 bits than RSA with
1024 bits [3]. Studies have shown that elliptic curve cryptography
is superior to RSA also in terms of speed and area required in
implementation [4-6].

Field programmable gate arrays (FPGAs) offer many advantages
in implementing cryptographic algorithms because they provide
fast performance and flexibility [7]. Hence, numerous studies on
FPGA implementation of elliptic curve cryptography have been
published including [6,8-20]. A comprehensive survey of the field
is presented in [21].

The principal operation required in every elliptic curve crypto-
system is called point multiplication. Much effort has been allo-
cated in developing methods for its efficient computation
because it acts as the bottleneck in elliptic curve cryptosystems.
A comprehensive review can be found in [22], for example. Point
multiplication is commonly known to be an operation which is
hard to parallelize because of data dependencies and much of the
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research has concentrated on studying effects of parallelization. Fi-
nite field multiplication dominates in the cost of point multiplica-
tion and, thus, reducing the number of field multiplications on the
critical path is essential. The fastest method for computing point
multiplication without precomputations, called Montgomery point
multiplication, was presented by Lopez and Dahab in [23]. Cheung
et al. [13] and Rodriguez-Henriquez et al. [18] showed that Mont-
gomery point multiplication can be efficiently computed with four
parallel field multipliers.

In 1991, Koblitz [24] suggested using a special family of elliptic
curves nowadays referred to as Koblitz curves. Point multiplication
is considerably more efficient on them than on general curves. Ko-
blitz curves have been widely studied in the academia and they
have been included also in certain standards, such as [25-27]. Ko-
blitz curves have attained some interest also in the FPGA commu-
nity as they have been considered in [9,14-17].

The problem that we are addressing is that computations on Ko-
blitz curves cannot be parallelized as efficiently as Montgomery
point multiplication. We recently presented a study on paralleliza-
tion of Koblitz curve computations in [14] but the methods pre-
sented are not as effective as those available for Montgomery
point multiplication. Only three parallel field multipliers can be
utilized in Koblitz curve point multiplication with the existing
methods [14] whereas Montgomery point multiplication can effi-
ciently use up to four multipliers [18,13]. Hence, the more multi-
pliers are available the smaller is the benefit of using Koblitz
curves. Koblitz curves are faster than general curves even if parallel
field multipliers are available, but the difference becomes smaller
which makes Koblitz curves less attractive.

The contributions of our paper are twofold:

(1) We present a simple and efficient method for speeding up
Koblitz curve computations when parallel field multipliers
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are available. The method is based on point operation inter-
leaving and it achieves full field multiplier utilization with
two or four field multipliers. Montgomery point multiplica-
tion can be implemented efficiently with two or four multi-
pliers as well [18,13]. Hence, both Koblitz curves and general
curves can achieve their full potential in the same hardware.
Our method implies that Koblitz curves are approximately
three times faster than general curves. Furthermore, our
method can be applied also in point multiplication algo-
rithms requiring precomputations whereas methods pre-
sented in [18,13] cannot which increases the difference
even further.

(2) We describe a highly optimized architecture based on our
method which achieves very fast point multiplication times.
The feasibility of the method and the architecture is demon-
strated by providing several implementations on an Altera
Stratix Il FPGA. The implementations achieve average point
multiplication times of only 4.9 us, 8.1 ps, and 12.1 ps on
K-163, K-233, and K-283, respectively, which are curves rec-
ommended by National Institute of Standards and Technol-
ogy (NIST) [25]. We also study the effects of field basis
selection and conclude that polynomial basis provides faster
results than normal basis.

The remainder of the paper is organized as follows. Section 2
presents the preliminaries of elliptic curve cryptography and dis-
cusses computation of point multiplication and Koblitz curves.
We describe our method in Section 3. Implementations showing
the practical feasibility of the method are presented in Section 4
and implementation results are given and compared to other pub-
lished results in Section 5. We end with conclusions and sugges-
tions for future research in Section 6.

2. Preliminaries

Elliptic curves defined over finite binary fields, denoted by F,m,
are commonly used in practical cryptosystems. These curves are
called binary curves. We consider binary curves of the following
form:

E:y*+xy=x3+ax* +b, 1)

where a, b € F,m with b#0. Henceforth, curves of this form are called
general curves.

Let E(F,» ) denote the set of points on E. A point (x, y) is in E(F,n)
if it satisfies Eq. (1). Also a point called the point at infinity, O, is a
point in E(F,»). Points in E(F,») form an additive abelian group
with O as an identity element. The additive operation of the group
is referred to as point addition and it is defined as P3=P; +P,
where P; € E(Fyn).

Point multiplication, which is a basic component of every ellip-
tic curve cryptosystem, is defined by using point additions as
follows:

Q=kP=P+P+---+P ()

k times

where Q, P € E(F,») and k is an integer. P is called the base point and
Q is the result point. Security of elliptic curve cryptosystems is
based on the difficulty of solving the inverse operation of point mul-
tiplication called elliptic curve discrete logarithm problem (ECDLP),
i.e,, the problem of finding k if P and Q are given.

Point multiplication decomposes into three levels of hierarchy
from top to bottom as follows:

e Point multiplication,
e Point operations, and
o Finite field arithmetic.

These hierarchy levels are discussed in the following sections by
concentrating on the subjects that are most relevant for this paper.
Our contributions target to the two highest levels of the hierarchy,
and they are considered in detail in Sections 2.1 and 2.2. The low-
est level is also considered shortly in Section 2.3. Finally, Koblitz
curves are discussed in Section 2.4.

2.1. Point multiplication

Point doubling is a special case of point addition, P3 = P; + P,
where P; = P, and, henceforth, point addition refers solely to the
operation P; = P; + P, where P;#P,. Point additions and point dou-
blings can be used in computing Eq. (2) when the integer k is rep-
resented with binary expansion as

(= .
k= kiZ’,

i

—_

where k; € {0,1}. (3)

Il
o

The simplest point multiplication algorithm is called double-
and-add algorithm and it scans the bits of k in order starting either
from the least significant bit (Isb) or from the most significant bit
(msb). Point doubling is performed for every bit, but point addition
is required only if k; = 1. The length of k is ¢ ~ m and, thus, the dou-
ble-and-add algorithm requires on average m point doublings and
m/2 point additions.

Because point addition is not needed if k; = 0, it is of interest to
reduce the number of nonzeros. A simple, but effective, option is to
use a signed-bit representation, i.e., k; € {0, £ 1}, called non-adja-
cent form (NAF). NAF has the property that adjacent bits are never
both nonzeros, i.e., kik;.; = 0 for all i. Every k has a unique NAF and
it has the minimum number of nonzeros among all signed-bit rep-
resentations. Let H(k) denote the Hamming weight of k, i.e., the
number of nonzeros in k. When k is in NAF, H(k) ~ m/3. NAF is
especially useful in point multiplication because point subtraction,
P3 = P; — P, = P; +(—P,), has roughly the same cost as point addi-
tion. When integers are in NAF, a modification of the double-
and-add algorithm is used called double-and-add-or-subtract algo-
rithm. Otherwise it is similar to the double-and-add algorithm, but
point subtraction is computed when k;= - 1. Thus, the average
cost of point multiplication is m point doublings and m/3 point
additions or point subtractions.

Further reductions in computational requirements can be
achieved by allowing precomputations involving the base point
P. Such methods include window methods and combings, for
example, but they are not considered in depth in this paper. How-
ever, the proposed method can be used also for such methods as
will be discussed in Section 3.

Montgomery’s ladder [28] is a point multiplication algorithm
which performs both point addition and point doubling in every
iteration of the algorithm. Hence, it has the cost of m point dou-
blings and m point additions. The efficiency of Montgomery’s lad-
der arises from the fact that point multiplication can be computed
without information of the y-coordinate. Thus, the main loop of the
algorithm operates only on the x-coordinate and the y-coordinate
of the result point is retrieved in the end. This leads to very effi-
cient point addition and point doubling. An adaptation of Mont-
gomery’s idea for binary curves was presented by Lépez and
Dahab in [23] and, henceforth, Montgomery point multiplication
refers to their algorithm.

2.2. Point operations

The traditional point representation with two coordinates as (x,
y) is referred to as the affine coordinate representation, or A for
short. If P=(x, y), point negation is given by —P= (x, x +y). Point
doubling, point addition, and point subtraction all require an inver-
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