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a b s t r a c t

A boundary integral equation with modified fundamental solution to solve the exterior
Robin problem for Helmholtz’s equation is considered. A specific choice of the coefficients
of these added terms ensure the unique solvability and, in addition, they can be chosen to
ensure the minimization of the least-squares difference of the modified and the exact
Green’s function or the minimization of the condition number. Numerical results are
reported showing the robustness and the superconvergence of the new method.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Jones [6] and Ursell [10,11] introduced the theory of modifying the Green’s function for the exterior Dirichlet and Neu-
mann problem. They added radiating spherical wave functions to the fundamental solution to ensure the unique solvability
of the boundary integral equation for all wave numbers. Various articles derived coefficients of these added terms to ensure
different criteria. Two of them are due to Kleinman and Roach [9] and Kleinman and Kress [8], respectively. They considered
minimizing the least-squares difference between the exact and modified Green’s function and minimizing the condition
number of the operator that solves the exterior Dirichlet and Neumann problem for a sphere and perturbations of it, respec-
tively. We extend these ideas to derive an optimal choice for the exterior Robin problem. From the numerical point of view it
is inefficient to use the full series. We show that a finite number of coefficients different from zero suffice to remove the crit-
ical wave numbers in a given range. Finally, we apply the boundary element collocation method to report numerical results
for solving the exterior Robin problem for the Helmholtz equation with modified Green’s function with such a choice of coef-
ficients in three dimensions, since no numerical results have been reported yet. In addition, we present the superconver-
gence of the new method. Note that numerical results and superconvergence at the collocation nodes have been reported
in Kleefeld [7, Chapter 4] based on the modified single-double layer approach. However, from the computational point of
view this approach is very costly, since it involves composite integral operators with a weak singularity. Alternatively,
one might deal directly with the hypersingularity of the normal derivative of the double layer. However, we would lose
the superconvergence. A short summary and possible future work concludes this article.

2. Problem formulation

Let D be a bounded open region in R3 containing the origin. The boundary of D is denoted by C and is assumed to consist
of a finite number of disjoint, closed bounded surfaces belonging to class C2 and we assume that the complement R3 n D is
connected (see [4, p. 32]).

0096-3003/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2012.08.055

E-mail address: kleefeld@tu-cottbus.de

Applied Mathematics and Computation 219 (2012) 2114–2123

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://dx.doi.org/10.1016/j.amc.2012.08.055
mailto:kleefeld@tu-cottbus.de
http://dx.doi.org/10.1016/j.amc.2012.08.055
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


The mathematical formulation of the exterior Robin problem consists of finding a complex-valued solution
u 2 C1ðR3 n DÞ \ C2ðR3 n DÞ solving the Helmholtz equation

DuðAÞ þ j2uðAÞ ¼ 0; A 2 R3 n D; j > 0

with the Robin boundary condition

@u
@m
ðxÞ þ ijkuðxÞ ¼ f ðxÞ; x 2 C;

where f is a given continuous function on the surface C; j is the wave number, k > 0 (a real-valued constant) is the surface
impedance (see [3]), and uðxÞ satisfies the Sommerfeld radiation condition

lim
r!1

r
@u
@r
� iju

� �
¼ 0;

where r ¼ jxj and the limit holds uniformly in all directions x=jxj. The normal derivative on the boundary exists in the sense
that

@u
@m
ðxÞ ¼ lim

h&0
mðxÞ; grad uðx� hmðxÞÞh i

exists uniformly on C, where m denotes the normal directed into the exterior of D (see [4, p. 68]).

3. Integral equation

For n ¼ �m; . . . ;m we denote the linearly independent spherical harmonics of order m by Ym
n . They are given by

Ym
n ðx̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4p
2nþ 1ð Þ n�mð Þ!

nþmð Þ!

s
Pm

n cos hð Þeim/;

where x̂ ¼ x=jxj ¼ sin h cos /; sin h sin /; cos hð Þ 2 S
2 ¼ x 2 R3 : jxj ¼ 1

� �
denotes a unit vector and Pm

n the associated Legendre
polynomial. Further denote with jn; yn, and hð1Þ;ð2Þn ¼ jn � iyn the spherical Bessel function of order n, the spherical Neumann
function of order n, and the spherical Hankel function of the first and second kind of order n, respectively. Then, the funda-
mental solution of the Helmholtz equation is given by

Ujðx; yÞ ¼ ij
X1
n¼0

Xn

m¼�n

jn jjxjð ÞYm
n x̂ð Þhð1Þn jjyjð ÞYm

n ŷð Þ; jxj < jyj: ð1Þ

Jones [6] added a series of the form

vjðx; yÞ ¼ ij
X1
n¼0

Xn

m¼�n

anmhð1Þn jjxjð ÞYm
n x̂ð Þhð1Þn jjyjð ÞYm

n ŷð Þ ð2Þ

to Uj, where the unknown coefficients anm have to satisfy certain conditions to ensure the convergence of the series (2) and
its term by term derivatives. Next, define the modified fundamental solution by

Wjðx; yÞ ¼ Ujðx; yÞ þ vjðx; yÞ:

With this, we define for r 2 CðCÞ the compact integral operators

Vj½r�ðxÞ ¼
Z

C
Wjðx; yÞrðyÞdCy; x 2 R3 n C;

Lj½r�ðxÞ ¼
Z

C
Wjðx; yÞrðyÞdCy; x 2 C;

MT
j½r�ðxÞ ¼

Z
C

@

@mx
Wjðx; yÞrðyÞdCy; x 2 C:

Assume the potential in the exterior can be written as

uðAÞ ¼ Vj½r�ðAÞ; A 2 R3 n D; ð3Þ

where the function r 2 CðCÞ is unknown. Taking the normal derivative of (3), letting A approach x 2 C and using the jump
relation, we obtain

@u
@m
ðxÞ ¼ �1

2
I þMT

j

� �
½r�ðxÞ; x 2 C: ð4Þ
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