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ARTICLE INFO ABSTRACT

Keywords: The traveling salesman problem is to find a minimum cost (weight) path for a given set of
DNA COlﬂpUting cities (vertices) and roads (edges). The path must start at a specified city and end there
The traveling salesman problem after going through all the other given cites only once. It is a classical NP-complete problem

Adleman-Lipton model

in graph theory. In this paper, we consider a DNA procedure for solving the traveling sales-
NP-complete problem

man problem in the Adleman-Lipton model. The procedure works in O(n) steps for the
traveling salesman of an edge-weighted graph with n vertices.
Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

1. Introduction

DNA computing is a newly emerging interdisciplinary science that uses DNA molecular biotechnologies to solve problems
in computer science or mathematics. DNA computing can execute billions of operations simultaneously. DNA also provides a
huge storage capacity since they encode information on the molecular scale. As the first work for DNA computing, Adleman
[1] presented an idea of solving the Hamiltonian path problem of size n in O(n) steps using DNA molecules. Lipton [2] dem-
onstrated that Adleman’s experiment could be used to determine the NP-complete satisfiability problem. In recent years, lots
of papers have occurred for designing DNA procedures and algorithms to solve various NP-complete problems [3-9].

In this paper, a DNA procedure is introduced for figuring out solutions of the traveling salesman problem: for an edge-
weighted graph G = (V, E) find a minimum cost (weight) path. The path must begin at a specified city (vertice) and end there
after going through all the other given cites (vertices) only once. For instance, the edge-weighted graph G in Fig. 1 defines
such a problem. We assume that the starting and ending vertice is »;. It is not difficult to find that the path
V1 — U7 — Vg — Us — U4 — V3 — U — v; with total weight 21 is a solution to the traveling salesman problem for
graph G in Fig. 1.

The rest of this paper is organized as follows. In Section 2, the Adleman-Lipton model is introduced in detail. Section 3
introduces a DNA algorithm for solving the traveling salesman problem and the complexity of the proposed algorithm is de-
scribed. We give conclusions in Section 4.

2. The Adleman-Lipton model

The DNA operations proposed by Aldeman [1] and Lipton [2] are described below. These operations will be used for fig-
uring out solutions of the traveling salesman problem in this paper. The Adleman-Lipton model: A (test) tube is a set of mol-
ecules of DNA (i.e., a multi-set of finite strings over the alphabet {A,C,G,T}). Given a tube, one can perform the following
operations [9]: Merge, Copy, Detect, Separation, Selection, Cleavage, Annealing, Denaturation, Discard and Read. Since these

* Corresponding author.
E-mail address: zcwang@shou.edu.cn (Z. Wang).

0096-3003/$ - see front matter Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2012.08.073


http://dx.doi.org/10.1016/j.amc.2012.08.073
mailto:zcwang@shou.edu.cn
http://dx.doi.org/10.1016/j.amc.2012.08.073
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

2268 Z. Wang et al./ Applied Mathematics and Computation 219 (2012) 2267-2270

Fig. 1. An edge-weighted graph G with 7 vertices.

10 manipulations are implemented with a constant number of biological steps for DNA strands [3], we assume that the com-
plexity of each manipulation is O(1) steps.

3. DNA algorithm for the traveling salesman problem

Let G=(V,E) be a edge-weighted graph with the set of vertices V= {wlk=1,2,...,n} and the set of edges
E ={e;j|1 <i,j <n,i##j}. Note that both e;; and e;; are in E if the vertices v; and v; are connected by an edge. Without loss
of generality, we assume that v, is the starting and ending vertex. Let |E| =s, Then, s < in(n—+1).

In the following, we use the symbols #,Ay,By(k =1,2...,n) and w;; to denote distinct DNA singled strands for which
[|#] = ||Ak]| = ||Bk||, where || - || denotes the length of the DNA singled strand. The symbols A;Bi(k = 2,3,...,n) denote the
vertex v,. Meanwhile the symbols #A;B;,A1B1# denote the starting and ending vertex v; which the symbol # is the signal
of starting and ending. Suppose that all weights in the given graph are commensurable. The DNA singled strands w;; are used
to denote the weights k;; on the edges e;; € E with ||w;j|| = kijw where w is a constant, e.g., take w = 5 mer in the following
discussion, Then, the ||w;;|| = 5k;;. Let m = maXxe, e5ki; and [|#|| = ||Ak|| = ||Bk|| = n* m = t. For example, for the graph in
Fig. 1. We can let m = max{5%3,5%5,5%7,5%9,5x 10} =50 mer, Then ||#|| = ||A]| = ||Bk||=n+m =1t =7 x50 =350
mer. Let

P = {wi;, #A1B1,A1B1#, A Byleij € E.k=2,3,... . n};
Q = {#.A1,B1.BwijAjle;; € E.1 <ij<ni#j}.

We design the following algorithm to solve the traveling salesman problem and give the corresponding DNA operations
as follows:

(1) We choose all possible paths, which start at ¢; and end at v;.
(1-1) Merge(P,Q);
(1-2) Annealing(P);
(1-3) Denaturation(P);
(1-4) Separation(P, {#A1B1}, Temp);
(1-5) Discard(P);
(1-6) Separation(Tmp, {A1B1#}, P);
After the above six steps of manipulations, the singled strands in tube P will encode all paths which start and end at v;.
For example, for the graph in Fig. 1, we have singled strands: #A;Biw;2A;B,W; 7A7B;w7 6 AsBsWe 4A4BaWa3A3B3ws
A1B1# € P which correspond to the path vy — v, — v; — v — v4 — v3 — v; respectively. This operation can be fin-
ished in O(1) steps since each manipulation above works in O(1) steps.
(2) We choose all possible paths which pass all the other vertices (cities) at least once.
For k=2 to k =n.
(2-1) Separation(P, {AxBi}, T);
(2-2) Discard(P);
(2-3) Merge(T, P);
End for
In the above operations, we get the strands that denote starting and ending specified vertex v;, synchronously going
through all the other vertices at least once. For example, for the graph in Fig. 1, we have singled strands:
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