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a b s t r a c t

In this paper, we extend parallel descent-like method (PDLM) and parallel splitting aug-
mented Lagrangian method (PSALM) for structured monotone variational inequalities
whose operator is composed by three separable operators, and prove their O(1/t) conver-
gence rate.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a closed convex set in Rn and F be a continuous mapping from Rn to itself. The variational inequality problem,
denoted by VIðX; FÞ, is to find a vector u 2 X, such that

ðu0 � uÞT FðuÞP 0; 8u0 2 X: ð1Þ

Suppose that the variational inequality has the following separable structure:

u ¼
x

y

� �
; FðuÞ ¼

f ðxÞ
gðyÞ

� �
; ð2Þ

X ¼ fðx; yÞjx 2 X ; y 2 Y;Axþ By ¼ bg; ð3Þ

where X � Rn1 ;Y � Rn2 ;A 2 Rm�n1 , B 2 Rm�n2 are given matrices with full rank, and b 2 Rm is a given vector, f : Rn1 !Rn1

and g : Rn2 !Rn2 are given monotone operators. Note that the solutions of the problem (1)–(3) are available when the fol-
lowing problem is solved: Find w ¼ ðx; y; kÞ 2 W :¼ X � Y �Rm such that

ðx0 � xÞT ½f ðxÞ � ATk�P 0;

ðy0 � yÞT ½gðxÞ � BTk�P 0;
Axþ By� b ¼ 0;

8><
>: ð4Þ

for any w0 ¼ ðx0; y0; k0Þ 2 W, where k 2 Rm is the Lagrange multiplier associated with the linear constraint Axþ By ¼ b.
Problem (4) can be conveniently denoted by VI2ðW; FÞ, whereas
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ðw0 �wÞT FðwÞP 0; 8w0 2 W;

where

FðwÞ :¼ Fðx; y; kÞ :¼
f ðxÞ � ATk

gðyÞ � BTk

Axþ By� b

0
B@

1
CA: ð5Þ

The last two decades have witnessed impressive development on the alternating direction method (ADM) in the areas of
variational inequalities and convex programming, see [5,7,10,15] to mention just a few. Assuming that H 2 Rm�m is a sym-
metric positive definite matrix and that wk ¼ ðxk; yk; kkÞ is a given iterate, then the ADM seeks the solution ðx; y; kÞ of the fol-
lowing problem in a determinate order,

ðx0 � xÞT f ðxÞ � AT ½kk � HðAxþ Byk � bÞ�
n o

P 0; 8x0 2 X ;

ðy0 � yÞT gðyÞ � BT ½kk � HðAxþ By� bÞ�
n o

P 0; 8y0 2 Y;

k ¼ kk � HðAxþ By� bÞ: ð6Þ

In (6), solving the second subvariational inequality requires the solution of the first subvariational inequality. Hence, the
alternating direction method is not eligible for parallel computing in the sense that the solutions of subvariational inequal-
ities in (6) cannot be obtained simultaneously.

For the purpose of parallel computing, the author of [9] proposed to revise (6) as follows:

ðx0 � xÞT f ðxÞ � AT ½kk � HðAxþ Byk � bÞ�
n o

P 0; 8x0 2 X ;

ðy0 � yÞT gðyÞ � BT ½kk � HðAxk þ By� bÞ�
n o

P 0; 8y0 2 Y;

k ¼ kk � HðAxþ By� bÞ: ð7Þ

where the variables of the involved subvariational inequalities are not crossed and thus suitable for parallel computing. The
solution of (7) is denoted by �wk ¼ ð�xk; �yk; �kkÞ. To ensure convergence of the iterative sequence, the new iterate
wkþ1 ¼ ðxkþ1; ykþ1; kkþ1Þ is generated by a descent step whose descent direction depends on wk and �wk, more specifically,

wkþ1 ¼ wk � akG�1Mðwk � �wkÞ; ð8Þ

where

M ¼
AT HA

BT HB

H�1

0
B@

1
CA; ð9Þ

G is a given proper positive-definite matrix and ak is a judiciously chosen positive step size. We call the method parallel
splitting augmented Lagrangian method (PSALM).

The recent work [14] improved the parallel splitting augmented Lagrangian method by refining the descent directions in
the descent steps, rather than �G�1Mðwk � ~wkÞ as in (8). Consequently, a new parallel descent-like method (PDLM) for solv-
ing (1)–(3) is proposed. The method develops the PSALM in the sense that, for the same nominal conditions, the new iterate
generated by this method is not farther form the solution set of VI2ðW; FÞ than that generated by PSALM.

This parallel consideration makes particular sense where magnitude of data increases explosively and intensive comput-
ing infrastructure treating mass data (such as parallel and distributed computing facilities) becomes more and more ad-
vanced and popular, see e.g. [2,4]. Recently, He [11] has studied the O(1/t) convergence rate of projection and contraction
methods for variational inequalities with Lipschitz continuous monotone operators. He and Yuan [12] have provided a uni-
form proof to show the O(1/t) convergence rate for both the original ADM and its linearized variant (known as the split inex-
act Uzawa method in image processing literature). The proof is based on a variational inequality approach which is novel in
the literature, and it is very simple. This strategy motivated us to study the O(1/t) convergence rate of PSALM [13]. In this
paper, we extend PDLM and PSALM for problems with three separable operators, and we use the same strategy to prove
the O(1/t) convergence rate of PDLM and PSALM.

2. The proposed methods and some properties

In this section, we describe the PDLM and PSALM for problems with three separable operators and prove several proper-
ties which are useful to establish the main result. The projection under the G-norm, denoted by PW;Gð�Þ, is defined as follows:
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