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a b s t r a c t

In this paper, we use the fractional variational homotopy perturbation iteration method
(FVHPIM) with modified Riemann–Liouville derivative to solve a time-fractional diffusion
equation. Using this method, a rapid convergent sequence tending to the exact solution of
the equation can be obtained. To show the efficiency of the considered method, some
numerical examples are presented.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Recently, fractional differential equations have gained much attention due to the tremendous use in fluid mechanics,
mathematical biology, electrochemistry, physics, and so on. For example, the nonlinear oscillation of earthquake can be
modeled with fractional derivatives, and the fluid-dynamic traffic model with fractional derivatives can eliminate the defi-
ciency arising from the assumption of continuum traffic flow [1]. Thanks to the effects of many researchers, several fractional
differential equations have been investigated and solved, such as the impulsive fractional differential equations [2], the frac-
tional advection–dispersion equation [3,4], certain types of time-fractional diffusion equation [5,6], fractional generalized
Burgers’ fluid [7], fractional KdV-type equations [8], space–time fractional Whitham–Broer–Kaupand equations [9], frac-
tional heat- and wave-like equations [10], and space fractional backward Kolmogorov equation [11].

Motivated and inspired by the on-going research in this field, we will consider the following time-fractional diffusion
equation

@auðX; tÞ
@ta ¼ DDuðX; tÞ � r � ðFðXÞuðX; tÞÞ; 0 < a 6 1; D > 0; ð1Þ

with the initial condition

uðX;0Þ ¼ /ðXÞ; X 2 X ð2Þ

and boundary condition

uðX; tÞ ¼ uðX; tÞ; X 2 @X; t P 0: ð3Þ

Here, @a

@ta ð�Þ is the modified Riemann–Liouville derivative [12–14] of order a defined in Section 2, D is the Laplace operator,r
is the Hamilton operator, X ¼ ½0; L1� � ½0; L2� � � � � � ½0; Ld� is the spatial domain of the problem, d is the dimension of the
space, X ¼ ðx1; x2; . . . ; xdÞ; @X is the boundary of X;uðX; tÞ denotes the probability density function of finding a particle at X
in time t, the positive constant D depends on the temperature, the friction coefficient, the universal gas constant and finally
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on the Avagadro constant, F(X) is the external force [15,16]. Eq. (1) can be interpreted as modeling the diffusion of a particle
under the action of the external force F(X) .

To solve the problem (1)–(3), we consider the FVHPIM in this work. The method is based on the variational iteration
method (VIM) [17,18], homotopy perturbation method (HPM) [19,20] and modified Riemann–Liouville derivative proposed
by G. Jumarie. The modified Riemann–Liouville derivative has the following merits. Firstly, the ath derivative of a constant is
zero. Secondly, compared with the classical Caputo derivative [21], the definition of the fractional derivative is not required
to satisfy higher integer-order derivative than a [22]. For its merits, G. Jumarie’s modified derivative has been successfully
applied to the probability calculus [23] and fractional Laplace problems [13].

This paper is organized as follows: in Section 2, some basic definitions of the fractional calculus and the algorithm of
FHPIM are given. In Section 3, the application of the FVHPIM to the problem (1)–(3) is illustrated, and some numerical exam-
ples are presented. And conclusions are drawn in Section 4.

2. Fractional calculus and FVHPIM

Assume f : R! R; x! f ðxÞ denote a continuous (but not necessarily differentiable) function. Through the fractional Rie-
mann–Liouville integral

Iax f ðxÞ ¼ 1
CðaÞ

Z x

0
ðx� nÞa�1f ðnÞdn; a > 0; ð4Þ

the modified Riemann–Liouville derivative is defined as

Da
x f ðxÞ ¼ 1

Cðn� aÞ
dn

dxn

Z x

0
ðx� nÞn�aðf ðnÞ � f ð0ÞÞdn; ð5Þ

where n� 1 6 a < n and n P 1.
G. Jumarie’s fractional derivative of order a is defined by the limit

f ðaÞ ¼ lim
e!0

Daf ðxÞ
ea ; ð6Þ

where

Daf ðxÞ ¼ ðFw� 1Þaf ðxÞ ¼
X1
k¼0

ð�1Þk
a
k

� �
f ðxþ ða� kÞeÞ: ð7Þ

Here Fwf ðxÞ ¼ f ðxþ eÞ. The proposed modified Riemann–Liouville derivative as shown in Eq. (5) is strictly equivalent to Eq.
(6) [13,22].

The integral with respect to ðdxÞa is defined as the solution of the following fractional differential equation

dy ¼ f ðxÞðdxÞa; x P 0; yð0Þ ¼ 0; 0 < a 6 1; ð8Þ

which is provided by the following result [13]:
Let f ðxÞ denote a continuous function, then the solution of the Eq. (8) is defined by the equality

y ¼
Z x

0
f ðnÞðdnÞa ¼ a

Z x

0
ðx� nÞa�1f ðnÞdn; 0 < a 6 1: ð9Þ

Now we give the main steps of the fractional variational homotopy perturbation iteration method as follows:

Step 1: Suppose that a nonlinear equation, say in two independent variables x and t, is given by

Dc
t uðx; tÞ ¼ Lðuðx; tÞÞ þ Nðuðx; tÞÞ þ gðx; tÞ; ð10Þ

where Dc
t ð�Þ is the modified Riemann–Liouville derivative, c > 0; L is a linear operator, N is a nonlinear operator, u ¼ uðx; tÞ is

an unknown function, and gðx; tÞ is the source inhomogeneous term.
Step 2: We construct the following correct functional

ukþ1ðx; tÞ ¼ ukðx; tÞ þ Ict fkðsÞðD
c
sukðx; sÞ � Lðukðx; sÞÞ � Nðeukðx; sÞÞ � gðx; sÞÞg; ð11Þ

where k is the Lagrange multiplier, which can be identified optimally via the variational theory. The subscript k P 0 denotes
the kth approximation, the function euk is considered as a restricted variation, that is deuk ¼ 0.
Step 3: According to the VIM and HPM, we construct the following iteration formula

X1
k¼0

qkukðx;tÞ¼u0ðx;tÞþq
X1
k¼1

qkukðx;tÞþ Ict kðsÞ
X1
k¼0

qkDc
sukðx;sÞ�

X1
k¼0

qkLðukðx;sÞÞ�
X1
k¼0

qkNðeukðx;sÞÞ�gðx;sÞ
 !( )( )

; ð12Þ
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