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a b s t r a c t

In this paper, a collocation method based on the Bernstein polynomials is presented for the
fractional Riccati type differential equations. By writing t ? ta (0 < a < 1) in the truncated
Bernstein series, the truncated fractional Bernstein series is obtained and then it is trans-
formed into the matrix form. By using Caputo fractional derivative, the matrix forms of the
fractional derivatives are constructed for the truncated fractional Bernstein series. We con-
vert each term of the problem to the matrix form by means of the truncated fractional
Bernstein series. By using the collocation points, we have the basic matrix equation which
corresponds to a system of nonlinear algebraic equations. Lastly, a new system of nonlinear
algebraic equations is obtained by using the matrix forms of the conditions and the basic
matrix equation. The solution of this system gives the approximate solution for the trun-
cated limited N. Error analysis included the residual error estimation and the upper bound
of the absolute errors is introduced for this method. The technique and the error analysis
are applied to some problems to demonstrate the validity and applicability of the proposed
method.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fractional differential equations are encountered in model problems in fluid flow, viscoelasticity, finance, engineering,
and other areas of applications [1–8].

In this paper, we consider the fractional Riccati type differential equation

Xm

k¼1

PkðtÞ
dkayðtÞ

dtka ¼ AðtÞ þ BðtÞyþ CðtÞy2; m� 1 < ma 6 m; 0 6 t 6 R <1; ð1Þ

under the mixed conditions

Xm�1

k¼0

apkyðkaÞð0Þ þ bpkyðkaÞðbÞ ¼ bp; p ¼ 0;1; . . . ;m� 1;0 < b 6 R: ð2Þ

Here, y(t) is an unknown function; A(t), B(t) and C(t) are the functions defined in [0,R]; apk, bpk and bp are appropriate con-
stants and ka is a constant describing the order of the fractional derivative. For a 2 Zþ; the problem becomes a classical Ricc-
ati differential equation.
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In recent years, the fractional Riccati differential equations have been solved by the homotopy perturbation method [9],
the enhanced homotopy perturbation method [9], the modified homotopy perturbation method [10], the homotopy analysis
method [11] and the Adomian’s decomposition method [12].

During the last decade, the fractional differential equations have been solved by means of the numerical and analytical
methods such as the Adomian’s decomposition method [13,14], the He’s variational iteration method [15], the Taylor poly-
nomials method [16,17], the Jacobi operational matrix method [18], the homotopy perturbation method [19], the homotopy
analysis method [20], the interpolation functions [21], the operational matrix method based on the Legendre polynomials
[22], the second kind Chebyshev wavelet method [23], the Bessel collocation method [24] and the Tau method [25].

On the other hand, Bhatti and Bracken [26] solved the differential equations by using the Galerkin method based on the
Bernstein polynomial basis, Yousefi and Behroozifar [27] presented an operational matrix method based on Bernstein poly-
nomials for the differential equations, Is�ık et al. [28,29] have studied on the Bernstein polynomial solutions of the linear pan-
tograph equations and linear integro-differential equations with weakly singular kernel and also Is�ık et al. [30] have solved
the high-order initial and boundary values problems by using a rational approximation based on Bernstein polynomials.

The remainder of the paper is organized as follows: The basic definitions are given in fractional calculus in Section 2. In
Section 3, the Bernstein polynomials and their some properties are presented. We summarize the method in Section 4. In
Section 5, the method is defined for approximate solution of the fractional problem (1), (2). In Section 6, the error analysis
technique based on the residual function is developed for the present method. In Section 7, we apply the proposed method to
the some problems and report our numerical finding. We end the paper with few concluding remarks in Section 8.

2. Basic definitions

In this section, we first give some basic definitions and some properties of fractional calculus in [31–36].

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cl, l 2 R if there exists a real number p > l such that
f(x) = xpf1(x), where f1(x) e C[0,1]. Clearly, Cl � Cb if b < l.

Definition 2.2. A function f(x), x > 0, is said to be in the space Cm
l ; l; m 2 N [ f0g; if f(m) e Cl.

Definition 2.3. The Riemann–Liouville fractional integral operator of order a P 0 of a function, f e Cl, l P �1; is defined as

Jaf ðxÞ ¼ 1
CðaÞ

Z x

0
ðx� tÞa�1f ðtÞdt; a P 0; x > 0;

J0f ðxÞ ¼ f ðxÞ:

The properties of the operator Ja can be found in [31,32]; we mention only the following.
For f e Cl, l P �1; a; b P 0 and c > �1:

(i) JaJbf(x) = Ja+bf(x),
(ii) JaJbf(x) = JbJaf(x),

(iii) Jaxc ¼ Cðcþ1Þ
Cðaþcþ1Þ x

aþc.

The Riemann–Liouville derivative has certain disadvantages when trying to model real-world phenomena using fractional
differential equations. Therefore, we will introduce a modified fractional differential operator Da

� proposed by Caputo’s work
on the theory of viscoelasticity [33].

Definition 2.4. The fractional derivative of f(x) in the Caputo sense is defined as

Da
� f ðxÞ ¼ Jm�aDmf ðxÞ ¼ 1

Cðm� aÞ

Z x

0
ðx� tÞm�a�1f ðmÞðtÞdt;

for m � 1 < a < m, m e N, x > 0, f 2 Cm
�1 where D ¼ d

dt.

For the Caputo derivative we have [34,35]

Da
�c ¼ 0; ðc is a constantÞ;

Da
�x

b ¼
0; for b 2 N0 and b < dae;
Cðbþ1Þ

Cðbþ1�aÞ x
b�a; for b 2 N0 and b P dae or b R N and b > bac:

(
ð3Þ

We note that the approximate solutions will be found by using the Caputo fractional derivative and its properties in this
study.
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