FISEVIER

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Generalized composition operators on weighted Hardy spaces

Stevo Stević^{a,*}, Ajay K. Sharma^b

ARTICLE INFO

Keywords: Generalized composition operator Weighted Hardy space Boundedness Essential norm Unit disk

ABSTRACT

The boundedness of recently introduced generalized composition operators on weighted Hardy spaces is characterized.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb D$ be the open unit disk in the complex plane $\mathbb C$, $\partial \mathbb D$ its boundary, $H(\mathbb D)$ the space of all holomorphic functions on $\mathbb D$, and $H^{\infty}(\mathbb D)$ the space of all bounded analytic functions on $\mathbb D$ with the supremum norm $\|f\|_{\infty} = \sup_{z \in \mathbb D} |f(z)|$.

For $a \in \mathbb{D}$, let σ_a be the involutive Möbius transformation of the unit disk, interchanging points a and 0, that is,

$$\sigma_a(z) = \frac{a-z}{1-\bar{a}z}.$$

Let ω be a positive continuous integrable function on [0,1). If such a function is extended for $z \in \mathbb{D}$ by $\omega(z) = \omega(|z|)$, it is called a *weight* function. We say, that a weight ω is *almost standard* if it is non-increasing and such that $\omega(r)/(1-r)^{1+\gamma}$ is nondecreasing for some $\gamma > 0$. By H_{ω} we denote the weighted Hardy space, a normed space consisting of all $f \in H(\mathbb{D})$ such that

$$||f||_{H_{\omega}}^{2} = |f(0)|^{2} + \int_{\mathbb{R}} |f'(z)|^{2} \omega(z) dA(z) < \infty, \tag{1}$$

where $dA(z) = \frac{1}{\pi} dx dy = \frac{1}{\pi} r dr d\theta$ stands for the normalized area measure on \mathbb{D} (for this and some related spaces see [1,5]). By some calculation we see that a function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ belongs to H_{ω} if and only if

$$\sum_{n=0}^{\infty} \omega_n |a_n|^2 < \infty,$$

where $\omega_0 = 1$ and

$$\omega_n = 2n^2 \int_0^1 r^{2n-1} \omega(r) dr, \quad n \in \mathbb{N}.$$

The sequence $(\omega_n)_{n\in\mathbb{N}_0}$ is called the *weight sequence* of the weighted Hardy space. For a Borel measure μ , we define the following Dirichlet-type space

^a Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia

^b School of Mathematics, Shri Mata Vaishno Devi University, Kakryal, Katra 182320, J&K, India

^{*} Corresponding author. *E-mail address*: sstevic@ptt.rs (S. Stević).

$$\mathcal{D}_{\mu}(\mathbb{D}) = \left\{ f \in H(\mathbb{D}) : \left\| f \right\|_{\mathcal{D}_{\mu}}^2 := \left| f(0) \right|^2 + \int_{\mathbb{D}} \left| f'(z) \right|^2 d\mu(z) < \infty \right\}.$$

Let $g \in H(\mathbb{D})$ and φ be a holomorphic self-maps of \mathbb{D} . The next operator denoted by $J_{g,\varphi}$ was introduced in [8,16] (for closely related n-dimensional operators see also [20,24])

$$J_{g,\phi}f(z) = \int_0^z f'(\varphi(\zeta))g(\zeta)d\zeta, \quad f \in H(\mathbb{D}). \tag{2}$$

It is called the *generalized composition operator*. The operator $J_{g,\phi}$ is a generalization of the integral-type operator J_g , which is obtained for $\varphi(z)=z$.

When $g(z) = \varphi'(z)$, then $J_{g,\phi}$ is reduced to the difference of a composition operator and a point evaluation operator, more precisely $J_{\varphi',\phi} = C_{\varphi} - \delta_{\varphi(0)}$. Operator (2) is one of products of linear operators on $H(\mathbb{D})$, which have attracted some attention recently, mainly due to the fact that these kind of operators make a link between classical function theory and operator theory. For some results in the area see, e.g. [2–40] and the references therein.

Given two Banach spaces Y and Z, we recall that a linear map $T: Y \to Z$ is bounded if $T(E) \subset Z$ is bounded for every bounded subset F of Y

Here we characterize the boundedness of the generalized composition operator $J_{g,o}$ on the weighted Hardy space.

Throughout the paper constants are denoted by C, they are positive and not necessarily the same at each occurrence. The notation $A \times B$ means that there is a positive constant C such that $BC \le A \le CB$.

2. Boundedness of $J_{g,\varphi}$ on H_w

In this section, we characterize the boundedness of generalized composition operators on weighted Hardy spaces. Recall that for $a, z \in \mathbb{D}$, the pseudohyperbolic distance d between a and z is defined by

$$d(a,z) = |\sigma_a(z)|.$$

For $r \in (0,1)$ and $a \in \mathbb{D}$, denote by D(a,r), the pseudohyperbolic disk whose pseudohyperbolic center is a and whose pseudohyperbolic radius is r, that is

$$D(a,r) = \{ z \in \mathbb{D} : d(a,z) < r \}.$$

Since σ_a is a linear fractional transformation, the pseudohyperbolic disk D(a,r) is also a Euclidean disk. Except for the special case $D(0,r)=r\mathbb{D}=\{z:|z|< r\}$, the Euclidean center and Euclidean radius of D(a,r) do not coincide with the pseudohyperbolic center and pseudohyperbolic radius. The Euclidean center and Euclidean radius of D(a,r) are respectively

$$\frac{1-r^2}{1-r^2|a|^2}a$$
 and $\frac{1-|a|^2}{1-r^2|a|^2}r$.

For each $r \in (0,1)$, there is a positive integer M and a sequence $(z_n)_{n \in \mathbb{N}} \subset \mathbb{D}$ with positive separation constant, that is,

$$\inf_{n\neq m}|\sigma_{z_n}(z_m)|>0,$$

such that $\bigcup_{n=1}^{\infty} D(z_n, r) = \mathbb{D}$ and every point in \mathbb{D} belongs to at most M sets in the family $\{D(z_n, 3r)\}_{n \in \mathbb{N}}$.

The notation A(D(a,r)) will denote the area of D(a,r). It is well-known that

$$A(D(a,r)) \approx |1 - \bar{a}z|^2 \approx (1 - |a|^2)^2 \approx (1 - |z|^2)^2 \approx A(D(z,r))$$
(3)

for every $z \in D(a, r)$.

In what follows, we make use of Carleson measure techniques, so we give a short introduction to Carleson sets and Carleson measures first.

Let *I* be an arc of $\partial \mathbb{D}$ and let S(I) be the Carleson windows defined by

$$S(I) = \{z \in \mathbb{D} : 1 - |I| \le |z| < 1, \ z/|z| \in I\},\$$

where |I| denotes the Lebesgue measure of I.

Let $0 < \alpha < \infty$. Recall that a positive Borel measure μ on $\mathbb D$ is called α -Carleson measure if

$$\|\mu\|_{\alpha} = \sup_{|I|>0} \frac{\mu(S(I))}{|I|^{\alpha}} < \infty.$$

In the next result, we characterize a Carleson-type positive Borel measures μ on weighted Hardy spaces. Before we formulate and prove the result we quote an auxiliary result from Ref. [5].

Download English Version:

https://daneshyari.com/en/article/4629657

Download Persian Version:

https://daneshyari.com/article/4629657

<u>Daneshyari.com</u>